Ultra-Processed Foods Consumption and Asthma in the Western Diet

  1. Frontela-Saseta, Carmen 23
  2. Finlayson, Graham 1
  3. Sánchez-Moya, Teresa 2
  4. Lorenzetti, Stefano 4
  5. López-Nicolás, Rubén 23
  1. 1 Appetite Control & Energy Balance Research Group, School of Psychology, Faculty of Medicine & Health, Lifton Place, University of Leeds, Leeds LS2 9JT, UK
  2. 2 Department of Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
  3. 3 Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30003 Murcia, Spain
  4. 4 Department of Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy
Revista:
Dietetics

ISSN: 2674-0311

Año de publicación: 2024

Volumen: 3

Número: 2

Páginas: 144-158

Tipo: Revisión

DOI: 10.3390/DIETETICS3020012 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Dietetics

Referencias bibliográficas

  • Scott, (2023), Thorax, 78, pp. 957, 10.1136/thorax-2022-219268
  • Asher, (2021), Lancet, 398, pp. 1569, 10.1016/S0140-6736(21)01450-1
  • Global Initiative for Asthma (2023, June 04). GINA Guidelines. Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org.
  • Murrison, (2019), J. Clin. Investig., 129, pp. 1504, 10.1172/JCI124612
  • Bédard, A., Li, Z., Ait-Hadad, W., Camargo, C.A., Leynaert, B., Pison, C., Dumals, O., and Varraso, R. (2021). The role of nutritional factors in asthma: Challenges and opportunities for epidemiological research. Int. J. Environ. Res. Public Health, 18.
  • Fainardi, V., Passadore, L., Labate, M., Pisi, G., and Esposito, S. (2022). An Overview of the Obese-Asthma Phenotype in Children. Int. J. Environ. Res. Public Health, 19.
  • Klevebro, (2023), Clin. Transl. Allergy, 13, pp. e12238, 10.1002/clt2.12238
  • Bantulà, M., Roca-Ferrer, J., Arismendi, E., and Picado, C. (2021). Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. J. Clin. Med., 10.
  • Tashiro, (2019), Allergol. Int., 68, pp. 135, 10.1016/j.alit.2018.10.004
  • Sharma, (2021), Curr. Allergy Asthma Rep., 21, pp. 46, 10.1007/s11882-021-01024-9
  • Christ, (2019), Immunity, 51, pp. 794, 10.1016/j.immuni.2019.09.020
  • Barcik, (2020), Immunity, 52, pp. 241, 10.1016/j.immuni.2020.01.007
  • Thorburn, (2015), Nat. Commun., 6, pp. 7320, 10.1038/ncomms8320
  • Papamichael, (2018), Pediatr. Allergy Immunol., 29, pp. 350, 10.1111/pai.12889
  • Chen, (2020), Nutr. J., 19, pp. 86, 10.1186/s12937-020-00604-1
  • Monteiro, (2019), Public Health Nutr., 12, pp. 1
  • Mertens, (2022), Eur. J. Nutr., 61, pp. 1521, 10.1007/s00394-021-02733-7
  • Hall, (2019), Cell Metab., 30, pp. 226, 10.1016/j.cmet.2019.05.020
  • Poti, (2017), Curr. Obes. Rep., 6, pp. 420, 10.1007/s13679-017-0285-4
  • Louzada, (2015), Prev. Med., 81, pp. 9, 10.1016/j.ypmed.2015.07.018
  • Bolhuis, D.P., Forde, C.G., Cheng, Y., Xu, H., Martin, N., and de Graaf, C. (2014). Slow Food: Sustained Impact of Harder Foods on the Reduction in Energy Intake over the Course of the Day. PLoS ONE, 9.
  • McCrickerd, (2017), J. Nutr., 147, pp. 1208, 10.3945/jn.116.244251
  • Zhu, Y., Hsu, W.H., and Hollis, J.H. (2013). The Impact of Food Viscosity on Eating Rate, Subjective Appetite, Glycemic Response and Gastric Emptying Rate. PLoS ONE, 8.
  • Llewellyn, (2008), Am. J. Clin. Nutr., 88, pp. 1560, 10.3945/ajcn.2008.26175
  • Khandpur, (2020), Ann. Nutr. Metab., 76, pp. 109, 10.1159/000507840
  • Solanas, (2022), Rev. Endocr. Metab. Disord., 23, pp. 697, 10.1007/s11154-022-09711-2
  • Christoph, (2019), Am. J. Clin. Nutr., 109, pp. 656, 10.1093/ajcn/nqy333
  • Gustafsson, (1995), Int. J. Food Sci. Nutr., 46, pp. 3, 10.3109/09637489509003379
  • Rolls, (2009), Appetite, 52, pp. 416, 10.1016/j.appet.2008.12.001
  • Fardet, (2016), Food Funct., 7, pp. 2338, 10.1039/C6FO00107F
  • Finlayson, (2012), Appetite, 58, pp. 1091, 10.1016/j.appet.2012.03.003
  • Elfhag, (2005), Obes. Res., 13, pp. 1070, 10.1038/oby.2005.125
  • Schifferstein, (1998), Food Qual. Prefer., 9, pp. 119, 10.1016/S0950-3293(97)00044-X
  • Siegrist, (2022), Food Qual. Prefer., 96, pp. 104441, 10.1016/j.foodqual.2021.104441
  • Prasad, (2008), Int. J. Res. Mark., 25, pp. 301, 10.1016/j.ijresmar.2008.05.001
  • Miclotte, (2019), Food Sci. Nutr., 60, pp. 1769
  • Machado, (2020), Nutr. Diabetes, 10, pp. 39, 10.1038/s41387-020-00141-0
  • Chang, (2023), EClinicalMedicine, 56, pp. 101840, 10.1016/j.eclinm.2023.101840
  • Moubarac, (2014), Curr. Obes. Rep., 3, pp. 256, 10.1007/s13679-014-0092-0
  • Access to Nutrition Initiative (2023, May 25). (2019, September). U.K. PRODUCT PROFILE 2019. Access to Nutrition Foundation. Available online: https://accesstonutrition.org/app/uploads/2020/02/UK-Product-Profile_Full_Report_2019.pdf.
  • Public Health England (2023, May 25). (2018, March). Calorie Reduction: The Scope and Ambition for Action, Available online: https://www.gov.uk/government/publications/calorie-reduction-the-scope-and-ambition-for-action.
  • Poti, (2015), Am. J. Clin. Nutr., 101, pp. 1251, 10.3945/ajcn.114.100925
  • Hall, (2017), Eur. J. Clin. Nutr., 71, pp. 323, 10.1038/ejcn.2016.260
  • Englyst, (2005), Br. J. Nutr., 94, pp. 1, 10.1079/BJN20051457
  • Zinöcker, M., and Lindseth, I. (2018). The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients, 10.
  • Juul, (2021), Adv. Nutr., 12, pp. 1673, 10.1093/advances/nmab049
  • Sonnenburg, (2014), Cell Metab., 20, pp. 779, 10.1016/j.cmet.2014.07.003
  • Serra, H.C.O.A., Rudakoff, L.C.S., Muniz, A.K.O.A., Magalhães, E.I.d.S., Bragança, M.L.B.M., Silva, A.A.M.d., Vianna, E.d.S.O., Bettiol, H., and Barbieri, M.A. (2023). Association between the Consumption of Ultra-Processed Foods and Asthma in Adults from Ribeirão Preto, São Paulo, Brazil. Nutrients, 15.
  • Cunha, (2020), Allergy, 75, pp. 2418, 10.1111/all.14296
  • Rufo, (2019), Allergy, 74, pp. 1277, 10.1111/all.13740
  • Frontela-Saseta, C., González-Bermúdez, C.A., and García-Marcos, L. (2020). Diet: A Specific Part of the Western Lifestyle Pack in the Asthma Epidemic. J. Clin. Med., 9.
  • Saadeh, D., Salameh, P., Caillaud, D., Charpin, D., De Blay, F., Kopferschmitt, C., Lavaud, F., Annesi-Maesano, I., Baldi, I., and Raherison, C. (2015). Prevalence and association of asthma and allergic sensitization with dietary factors in schoolchildren: Data from the french six cities study. BMC Public Health, 30.
  • Baraldi, (2016), BMJ Open., 6, pp. e009892, 10.1136/bmjopen-2015-009892
  • Chinn, (2001), Thorax, 56, pp. 133, 10.1136/thorax.56.2.133
  • King, (2005), Inter. J. Obes., 30, pp. 281, 10.1038/sj.ijo.0803176
  • Matheson, (2008), Soc. Sci. Med., 66, pp. 675, 10.1016/j.socscimed.2007.10.008
  • Stuckler, D., and Nestle, M. (2012). Big Food, Food Systems, and Global Health. PLoS Med., 9.
  • Halloran, (2011), J. Pediatr., 159, pp. 3, 10.1016/j.jpeds.2011.04.003
  • Ferretti, (2021), Glob. Health, 17, pp. 91, 10.1186/s12992-021-00735-y
  • Valicente, (2023), Adv. Nutr., 14, pp. 718, 10.1016/j.advnut.2023.04.006
  • Shivappa, (2014), Public Health Nutr., 17, pp. 1689, 10.1017/S1368980013002115
  • Shaheen, (2010), Eur. Respir. J., 36, pp. 277, 10.1183/09031936.00114709
  • Mignogna, (2022), Clin. Nutr., 41, pp. 2226, 10.1016/j.clnu.2022.08.020
  • Beijers, (2022), Nutr. Rev., 80, pp. 1434, 10.1093/nutrit/nuab077
  • Talaei, (2023), Respir. Res., 24, pp. 82, 10.1186/s12931-023-02383-9
  • Melo, (2018), Pediatr. Allergy Immunol., 29, pp. 504, 10.1111/pai.12911
  • Lunjani, (2022), Pediatr. Allergy Immunol., 33, pp. e13892, 10.1111/pai.13892
  • Agus, (2016), Sci. Rep., 6, pp. 19032, 10.1038/srep19032
  • Dang, (2019), Mucosal Immunol., 12, pp. 843, 10.1038/s41385-019-0160-6
  • Monteiro, C.A., Cannon, G., Lawrence, M., Costa Louzada, M.L., and Pereira Machado, P. (2019). Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System, FAO.
  • Buckley, (2019), Environ. Int., 131, pp. 105057, 10.1016/j.envint.2019.105057
  • DeJarnett, (2014), J. Am. Heart Assoc., 3, pp. e000934, 10.1161/JAHA.114.000934
  • Lyons, (2015), Environ. Health, 14, pp. 46, 10.1186/s12940-015-0036-5
  • Serrano, (2014), Environ. Health, 13, pp. 43, 10.1186/1476-069X-13-43
  • Zhang, (2018), Environ. Int., 117, pp. 154, 10.1016/j.envint.2018.04.047
  • (2023, June 07). REACH Article 59. Available online: https://echa.europa.eu/candidate-list-table.
  • Lorenzetti, (2015), Ann. Ist. Super. Sanita., 51, pp. 167
  • Lorenzetti, S., Plösch, T., and Teller, I.C. (2021). Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants, 10.
  • Kliemann, (2022), Br. J. Cancer, 127, pp. 14, 10.1038/s41416-022-01749-y
  • Pagliai, (2021), Br. J. Nutr., 125, pp. 308, 10.1017/S0007114520002688
  • Zhong, (2023), Int. J. Cancer, 152, pp. 835, 10.1002/ijc.34290
  • Saklayen, (2018), Curr. Hypertens. Rep., 20, pp. 12, 10.1007/s11906-018-0812-z
  • Menegati, (2023), Immunol. Lett., 255, pp. 10, 10.1016/j.imlet.2023.01.004
  • Natalini, (2023), Nat. Rev. Microbiol., 21, pp. 222, 10.1038/s41579-022-00821-x
  • Hernández-Díazcouder, A., González-Ramírez, J., Sanchez, F., Leija-Martínez, J.J., Martínez-Coronilla, G., Amezcua-Guerra, L.M., and Sánchez-Muñoz, F. (2022). Negative Effects of Chronic High Intake of Fructose on Lung Diseases. Nutrients, 14.
  • Xie, (2016), Reprod. Toxicol., 65, pp. 224, 10.1016/j.reprotox.2016.08.007
  • Abellan, (2022), Environ. Int., 162, pp. 107178, 10.1016/j.envint.2022.107178
  • Casas, (2020), J. Investig. Allergol. Clin. Immunol., 30, pp. 215, 10.18176/jiaci.0580
  • Oliver, (2021), Cell Biochem. Biophys., 79, pp. 669, 10.1007/s12013-021-01020-w
  • Vassilopoulou, E., Guibas, G.V., and Papadopoulos, N.G. (2022). Mediterranean-Type Diets as a Protective Factor for Asthma and Atopy. Nutrients, 14.
  • Koumpagioti, D., Boutopoulou, B., and Douros, K. (2020). The Mediterranean Diet and Asthma, Elsevier Inc.. [2nd ed.].
  • Pfeffer, (2018), Chest, 153, pp. 1229, 10.1016/j.chest.2017.09.005
  • Salmanpour, (2022), J. Immunol. Res., 2022, pp. 6735900, 10.1155/2022/6735900
  • Gupta, (2011), Am. J. Respir. Crit. Care Med., 184, pp. 1342, 10.1164/rccm.201107-1239OC
  • Ogeyingbo, (2021), Cureus, 13, pp. e17279
  • Williamson, (2023), Cochrane Database Syst. Rev., 2, pp. CD011511
  • Tristan Asensi, M., Napoletano, A., Sofi, F., and Dinu, M. (2023). Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients, 15.
  • Patel, V.B., and Preedy, V.R. (2022). Biomarkers in Nutrition. Biomarkers in Disease: Methods, Discoveries and Applications, Springer.
  • Wendell, (2014), J. Allergy Clin. Immunol., 133, pp. 1255, 10.1016/j.jaci.2013.12.1087
  • Scott, (2011), Eur. Respir. J., 38, pp. 594, 10.1183/09031936.00139810
  • Black, (1997), Eur. Respir. J., 10, pp. 6, 10.1183/09031936.97.10010006
  • Feketea, G., Kostara, M., Bumbacea, R.S., Vassilopoulou, E., and Tsabouri, S. (2023). Vitamin D and Omega-3 (Fatty Acid) Supplementation in Pregnancy for the Primary Prevention of Food Allergy in Children-Literature Review. Children, 10.
  • Zheng, (2020), Cell Res., 30, pp. 492, 10.1038/s41422-020-0332-7
  • Morris, (2013), Am. J. Respir. Crit. Care Med., 187, pp. 1067, 10.1164/rccm.201210-1913OC
  • Stricker, S., Hain, T., Chao, C.-M., and Rudloff, S. (2022). Respiratory and Intestinal Microbiota in Pediatric Lung Diseases—Current Evidence of the Gut–Lung Axis. Int. J. Mol. Sci., 23.
  • Tang, (2019), J. Am. Coll. Cardiol., 73, pp. 2089, 10.1016/j.jacc.2019.03.024
  • Pascale, (2019), Curr. Opin. Pharmacol., 49, pp. 1, 10.1016/j.coph.2019.03.011
  • Ley, (2005), Proc. Natl. Acad. Sci. USA, 102, pp. 11070, 10.1073/pnas.0504978102
  • Raza, (2019), J. Cancer Res. Clin. Oncol., 145, pp. 49, 10.1007/s00432-018-2816-0
  • Brigham, (2015), Ann. Allergy Asthma Immunol., 114, pp. 273, 10.1016/j.anai.2014.11.003
  • Collins, (2012), Nat. Rev. Microbiol., 10, pp. 735, 10.1038/nrmicro2876
  • Espírito Santo, C., Caseiro, C., Martins, M.J., Monteiro, R., and Brandão, I. (2021). Gut Microbiota, in the Halfway between Nutrition and Lung Function. Nutrients, 13.
  • Jardon, (2022), Gut, 71, pp. 1214, 10.1136/gutjnl-2020-323715
  • Zhang, P. (2022). Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci., 23.
  • Gill, (2022), Front. Immunol., 13, pp. 866059, 10.3389/fimmu.2022.866059
  • Miranda, P.M., De Palma, G., Serkis, V., Lu, J., Louis-Auguste, M.P., McCarville, J.L., Verdu, E.F., Collins, S.M., and Bercik, P. (2018). High Salt Diet Exacerbates Colitis in Mice by Decreasing Lactobacillus Levels and Butyrate Production. Microbiome, 6.
  • Raoul, P., Cintoni, M., Palombaro, M., Basso, L., Rinninella, E., Gasbarrini, A., and Mele, M.C. (2022). Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms, 10.
  • Ashique, S., De Rubis, G., Sirohi, E., Mishra, N., Rihan, M., Garg, A., Reyes, R.J., Manandhar, B., Bhatt, S., and Jha, N.K. (2022). Short Chain Fatty Acids: Fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases. Chem. Biol. Interact., 368.
  • Antunes, (2019), Nat. Commun., 10, pp. 3273, 10.1038/s41467-019-11152-6
  • Zhou, X., Qiao, K., Wu, H., and Zhang, Y. (2023). The Impact of Food Additives on the Abundance and Composition of Gut Microbiota. Molecules, 28.
  • Steinmeyer, (2015), Curr. Allergy Asthma Rep., 15, pp. 24, 10.1007/s11882-015-0524-2
  • Zhao, (2018), J. Zhejiang Univ. Sci. B, 19, pp. 663, 10.1631/jzus.B1700346
  • Roduit, (2019), Allergy, 74, pp. 799, 10.1111/all.13660