An Engineered Escherichia coli Community for Studying Quorum Sensing

  1. Li, Yuwei 1
  2. Clarke, Justin E. 2
  3. O’Neill, Alex J. 2
  4. Goycoolea, Francisco M. 1
  5. Smith, James 1
  1. 1 School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
  2. 2 Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
Journal:
SynBio

ISSN: 2674-0583

Year of publication: 2023

Volume: 1

Issue: 2

Pages: 144-157

Type: Article

DOI: 10.3390/SYNBIO1020010 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: SynBio

Abstract

In bacterial communities, quorum sensing (QS) is a process mediated via chemical signalling that individuals use to coordinate their collective phenotypes. It is closely associated with pathogenic traits such as virulence factor production and antibiotic resistance. In their natural habitats, bacteria live in small niches, forming intricate consortia, where the role of QS is little understood. This work aims to construct a tuneable, trackable, and reconfigurable model bacterial community for studying QS. To this end, three Escherichia coli fluorescent reporter strains were constructed based on the paradigm LuxI/LuxR QS system. The strains recreate the three major aspects of QS response: sensing (S), autoinducer production (P), and regulation (R). We found that the response of the S strain as a function of the N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) concentration did not saturate and exhibited a concentration-dependent response (in the range 10−7 to 10−4 M). The P strain produced OHHL and showed the ability to activate the S response, while the R strain showed the ability to attenuate the response due to the expression of the lactonase AiiA. Monitoring the fluorescent signals of the strains permits tracking the activation and attenuation activities of the LuxI/LuxR QS system. Future studies can now also benefit from this straightforward subcloning strategy to study other QS systems.

Funding information

Funders

  • University of Leeds School of Food Science and Nutrition

Bibliographic References

  • Engebrecht, (1983), Cell, 32, pp. 773, 10.1016/0092-8674(83)90063-6
  • Zhao, X., Yu, Z., and Ding, T. (2020). Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms, 8.
  • Lee, (2002), Appl. Environ. Microbiol., 68, pp. 3919, 10.1128/AEM.68.8.3919-3924.2002
  • Schuster, (2013), Annu. Rev. Microbiol., 67, pp. 43, 10.1146/annurev-micro-092412-155635
  • Whitehead, (2001), FEMS Microbiol. Rev., 25, pp. 365, 10.1111/j.1574-6976.2001.tb00583.x
  • Rutherford, (2012), Cold Spring Harb. Perspect. Med., 2, pp. a012427, 10.1101/cshperspect.a012427
  • Parsek, (2000), Proc. Natl. Acad. Sci. USA, 97, pp. 8789, 10.1073/pnas.97.16.8789
  • Urbanowski, (2004), J. Bacteriol., 186, pp. 631, 10.1128/JB.186.3.631-637.2004
  • Eberhard, (1981), Biochemistry, 20, pp. 2444, 10.1021/bi00512a013
  • Engebrecht, (1984), Proc. Natl. Acad. Sci. USA, 81, pp. 4154, 10.1073/pnas.81.13.4154
  • Boo, (2021), Curr. Opin. Syst. Biol., 28, pp. 100378, 10.1016/j.coisb.2021.100378
  • Ruby, (2005), Proc. Natl. Acad. Sci. USA, 102, pp. 3004, 10.1073/pnas.0409900102
  • Dong, (2000), Proc. Natl. Acad. Sci. USA, 97, pp. 3526, 10.1073/pnas.97.7.3526
  • Dong, (2001), Nature, 411, pp. 813, 10.1038/35081101
  • Chen, (2013), Int. J. Mol. Sci., 14, pp. 17477, 10.3390/ijms140917477
  • Fetzner, (2015), J. Biotechnol., 201, pp. 2, 10.1016/j.jbiotec.2014.09.001
  • Sikdar, (2020), Expert Rev. Anti-Infect. Ther., 18, pp. 1221, 10.1080/14787210.2020.1794815
  • Steindler, (2007), FEMS Microbiol. Lett., 266, pp. 1, 10.1111/j.1574-6968.2006.00501.x
  • Schuster, (2006), Antimicrob. Agents Chemother., 50, pp. 3674, 10.1128/AAC.00665-06
  • Qin, X., Vila-Sanjurjo, C., Singh, R., Philipp, B., and Goycoolea, F.M. (2020). Screening of Bacterial Quorum Sensing Inhibitors in a Vibrio fischeri LuxR-Based Synthetic Fluorescent E. coli Biosensor. Pharmaceuticals, 13.
  • Mukherjee, (2019), Nat. Rev. Microbiol., 17, pp. 371, 10.1038/s41579-019-0186-5
  • Neubig, (2003), Pharmacol. Rev., 55, pp. 597, 10.1124/pr.55.4.4
  • Defoirdt, (2013), Trends Microbiol., 21, pp. 619, 10.1016/j.tim.2013.09.006
  • Han, Y. (2021, May 10). luxPR_4G12T. Available online: http://parts.igem.org/Part:BBa_K3205005.
  • Nealson, (1970), J Bacteriol., 104, pp. 313, 10.1128/jb.104.1.313-322.1970
  • Lopreside, (2019), Anal. Chem., 91, pp. 15284, 10.1021/acs.analchem.9b04444
  • Byers, (2002), J. Bacteriol., 184, pp. 1163, 10.1128/jb.184.4.1163-1171.2002
  • Forsten, (2017), Microb. Cell Fact., 16, pp. 220, 10.1186/s12934-017-0832-4
  • Namdev, (2019), Indian J. Clin. Biochem., 34, pp. 357, 10.1007/s12291-019-0813-y
  • Weingarten, (2021), Adv. Mater. Interfaces, 8, pp. 2100785, 10.1002/admi.202100785
  • Michael, (2001), J. Bacteriol., 183, pp. 5733, 10.1128/JB.183.19.5733-5742.2001
  • Holden, (1999), Mol. Microbiol., 33, pp. 1254, 10.1046/j.1365-2958.1999.01577.x
  • Ceja, (2010), Can. J. Microbiol., 56, pp. 168, 10.1139/W09-123
  • Berg, (1991), Genetics, 127, pp. 649, 10.1093/genetics/127.4.649
  • Rogozin, (2003), Mutat. Res./Rev. Mutat. Res., 544, pp. 65, 10.1016/S1383-5742(03)00032-2
  • Hensel, (2019), mSphere, 4, pp. 10
  • Bandiera, L., Hou, Z., Kothamachu, V.B., Balsa-Canto, E., Swain, P.S., and Menolascina, F. (2018). On-Line Optimal Input Design Increases the Efficiency and Accuracy of the Modelling of an Inducible Synthetic Promoter. Processes, 6.
  • Chen, (2013), Nat. Methods, 10, pp. 659, 10.1038/nmeth.2515
  • Muthukrishnan, (2012), Nucleic Acids Res., 40, pp. 8472, 10.1093/nar/gks583
  • Hensel, Z. (2017). pZH509, A plasmid-based Escherichia coli gene expression system with cell-to-cell variation below the extrinsic noise limit. PLoS ONE, 12.
  • Cormack, (1996), Gene, 173, pp. 33, 10.1016/0378-1119(95)00685-0
  • Devine, (1988), Biochemistry, 27, pp. 837, 10.1021/bi00402a052
  • Shaner, (2004), Nat. Biotechnol., 22, pp. 1567, 10.1038/nbt1037
  • Ai, (2007), Biochemistry, 46, pp. 5904, 10.1021/bi700199g