Improving the Nutritional Quality of Protein and Microbiota Effects in Additive- and Allergen-Free Cooked Meat Products

  1. Ayuso, Pablo 12
  2. Quizhpe, Jhazmin 12
  3. Yepes, Fani 1
  4. Miranzo, Domingo 1
  5. Avellaneda, Antonio 1
  6. Nieto, Gema 2
  7. Ros, Gaspar 12
  1. 1 Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain
  2. 2 Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain
Revista:
Foods

ISSN: 2304-8158

Año de publicación: 2024

Volumen: 13

Número: 12

Páginas: 1792

Tipo: Artículo

DOI: 10.3390/FOODS13121792 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Foods

Información de financiación

Financiadores

  • Spanish Centre for the Development of Industrial Technology
    • IDI-20200950

Referencias bibliográficas

  • World Cancer Research Fund/American Institute for Cancer Research (2018). Diet, Nutrition, Physical Activity and Cancer: A Global Perspective, Continuous Update Project Expert Report; American Institute for Cancer Research.
  • Johnston, (2023), Anim. Front., 13, pp. 19, 10.1093/af/vfac095
  • Johnston, (2019), Ann. Intern. Med., 171, pp. 756, 10.7326/M19-1621
  • Abraham, (2020), J. Food Anim. Sci., 1, pp. 66
  • (2013), Meat Sci., 93, pp. 586, 10.1016/j.meatsci.2012.09.018
  • Jiang, (2016), Meat Sci., 120, pp. 107, 10.1016/j.meatsci.2016.04.005
  • Kumar, N., Singh, A., Sharma, D.K., and Kishore, K. (2019). Toxicity of Food Additives. Food Safety and Human Health, Academic Press.
  • Nair, M.S., Nair, D.V.T., Kollanoor Johny, A., and Venkitanarayanan, K. (2020). Use of Food Preservatives and Additives in Meat and Their Detection Techniques. Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies, Academic Press.
  • EFSA Panel on Food Additives and Flavourings (FAF), Younes, M., Aquilina, G., Castle, L., Engel, K.-H., Fowler, P., Frutos Fernandez, M.J., Fürst, P., Gürtler, R., and Husøy, T. (2019). Re-Evaluation of Phosphoric Acid–Phosphates—Di-, Tri- and Polyphosphates (E 338–341, E 343, E 450–452) as Food Additives and the Safety of Proposed Extension of Use. EFSA J., 17, e05674.
  • Silva, (2016), EMIR J. Food Agric., 28, pp. 823, 10.9755/ejfa.2016-04-351
  • Wu, (2022), Carbohydr. Polym., 277, pp. 118830, 10.1016/j.carbpol.2021.118830
  • Munyaka, P.M., Sepehri, S., Ghia, J.E., and Khafipour, E. (2016). Carrageenan Gum and Adherent Invasive Escherichia coli in a Piglet Model of Inflammatory Bowel Disease: Impact on Intestinal Mucosa-Associated Microbiota. Front. Microbiol., 7.
  • Tobacman, J.K. (2001). Review of Harmful Gastrointestinal Effects of Carrageenan in Animal Experiments, EHP Publishing.
  • Guimaraes, (2021), Basic Clin. Pharmacol. Toxicol., 128, pp. 9, 10.1111/bcpt.13474
  • Deveci, (2024), J. Sci. Food Agric., 104, pp. 2551, 10.1002/jsfa.13102
  • Sambu, S., Hemaram, U., Murugan, R., and Alsofi, A.A. (2022). Toxicological and Teratogenic Effect of Various Food Additives: An Updated Review. Biomed Res. Int., 2022.
  • Siegrist, (2017), Trends Food Sci. Technol., 67, pp. 44, 10.1016/j.tifs.2017.06.010
  • Serrano, A., Ros, G., and Nieto, G. (2019). Regulation of Inflammatory Response and the Production of Reactive Oxygen Species by a Functional Cooked Ham Reformulated with Natural Antioxidants in a Macrophage Immunity Model. Antioxidants, 8.
  • Martínez-Zamora, L., Ros, G., and Nieto, G. (2020). Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers. Antioxidants, 9.
  • Bellucci, E.R.B., Bis-Souza, C.V., Domínguez, R., Bermúdez, R., and da Silva Barretto, A.C. (2022). Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules, 12.
  • Ribeiro, (2019), Meat Sci., 148, pp. 181, 10.1016/j.meatsci.2018.10.016
  • Serrano, A., González-Sarrías, A., Tomás-Barberán, F.A., Avellaneda, A., Gironés-Vilaplana, A., Nieto, G., and Ros-Berruezo, G. (2020). Anti-Inflammatory and Antioxidant Effects of Regular Consumption of Cooked Ham Enriched with Dietary Phenolics in Diet-Induced Obese Mice. Antioxidants, 9.
  • Nieto, G., Martínez-Zamora, L., Peñalver, R., Marín-Iniesta, F., Taboada-Rodríguez, A., López-Gómez, A., and Martínez-Hernández, G.B. (2023). Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods, 13.
  • Herreman, (2020), Food Sci. Nutr., 8, pp. 5379, 10.1002/fsn3.1809
  • FAO, Food and Agricultural Organization of the United Nations (2013). Dietary Protein Quality Evaluation in Human Nutrition Report of an FAO Expert Consultation, FAO.
  • Bailey, (2020), Br. J. Nutr., 124, pp. 14, 10.1017/S0007114520000641
  • Agarwal, S., and Fulgoni, V.L. (2023). Association of Pork (All Pork, Fresh Pork and Processed Pork) Consumption with Nutrient Intakes and Adequacy in US Children (Age 2–18 Years) and Adults (Age 19+ Years): NHANES 2011–2018 Analysis. Nutrients, 15.
  • Czech, A., Domaradzki, P., Niedzielak, M., and Stadnik, J. (2024). Nutritional Value and Physicochemical Properties of Male and Female Broad-Breasted Bronze Turkey Muscle. Foods, 13.
  • Thursby, (2017), Biochem. J., 474, pp. 1823, 10.1042/BCJ20160510
  • Cresci, (2015), Nutr. Clin. Pract., 30, pp. 734, 10.1177/0884533615609899
  • Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019). What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7.
  • Liu, (2022), Aging Dis., 13, pp. 1106, 10.14336/AD.2022.0104
  • Xiong, R.-G., Zhou, D.-D., Wu, S.-X., Huang, S.-Y., Saimaiti, A., Yang, Z.-J., Shang, A., Zhao, C.-N., Gan, R.-Y., and Li, H.-B. (2022). Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods, 11.
  • Liang, (2023), Trends Food Sci. Technol., 140, pp. 104141, 10.1016/j.tifs.2023.104141
  • Zhou, X., Qiao, K., Wu, H., and Zhang, Y. (2023). The Impact of Food Additives on the Abundance and Composition of Gut Microbiota. Molecules, 28.
  • Liu, (2019), Food Sci. Nutr., 7, pp. 608, 10.1002/fsn3.884
  • Molino, (2021), Nat. Protoc., 16, pp. 3186, 10.1038/s41596-021-00537-x
  • Madrid, (2013), Anim. Prod. Sci., 53, pp. 146, 10.1071/AN12067
  • Bourges, (2005), Arch. Latinoam. Nutr., 55, pp. 172
  • Panzella, (2017), J. Agric. Food Chem., 65, pp. 6452, 10.1021/acs.jafc.7b02302
  • Tretyn, (2020), J. Appl. Microbiol., 128, pp. 330, 10.1111/jam.14380
  • Callahan, (2016), Nat. Methods, 13, pp. 581, 10.1038/nmeth.3869
  • Bolyen, (2019), Nat. Biotechnol., 37, pp. 852, 10.1038/s41587-019-0209-9
  • Murali, A., Bhargava, A., and Wright, E.S. (2018). IDTAXA: A Novel Approach for Accurate Taxonomic Classification of Microbiome Sequences. Microbiome, 6.
  • Allard, G., Ryan, F.J., Jeffery, I.B., and Claesson, M.J. (2015). SPINGO: A Rapid Species-Classifier for Microbial Amplicon Sequences. BMC Bioinform., 16.
  • McMurdie, P.J., and Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8.
  • Lozupone, (2005), Appl. Environ. Microbiol., 71, pp. 8228, 10.1128/AEM.71.12.8228-8235.2005
  • Gardner, (2019), Nutr. Rev., 77, pp. 197, 10.1093/nutrit/nuy073
  • Faber, (2010), J. Anim. Sci., 88, pp. 1421, 10.2527/jas.2009-2140
  • Lang, (2024), J. Future Foods, 4, pp. 193, 10.1016/j.jfutfo.2023.07.002
  • Aubry, (2007), J. Agric. Food Chem., 55, pp. 5343, 10.1021/jf070252k
  • Astruc, (2008), J. Agric. Food Chem., 56, pp. 1488, 10.1021/jf072999g
  • Gao, (2023), Food Chem., 428, pp. 136747, 10.1016/j.foodchem.2023.136747
  • Hellwig, (2019), Angew. Chem. Int. Ed., 58, pp. 16742, 10.1002/anie.201814144
  • Li, (2017), Food Res. Int., 92, pp. 88, 10.1016/j.foodres.2016.12.024
  • Wang, (2023), Food Chem., 422, pp. 136188, 10.1016/j.foodchem.2023.136188
  • Bhat, (2022), Trends Food Sci. Technol., 124, pp. 309, 10.1016/j.tifs.2022.04.012
  • Lee, (2021), Food Chem., 338, pp. 128073, 10.1016/j.foodchem.2020.128073
  • Xue, (2020), Food Chem., 306, pp. 125602, 10.1016/j.foodchem.2019.125602
  • Bailey, (2019), Anim. Front., 9, pp. 18, 10.1093/af/vfz038
  • Xie, (2020), Mol. Nutr. Food Res., 64, pp. e2000291, 10.1002/mnfr.202000291
  • Cancello, R., Turroni, S., Rampelli, S., Cattaldo, S., Candela, M., Cattani, L., Mai, S., Vietti, R., Scacchi, M., and Brigidi, P. (2019). Effect of Short-Term Dietary Intervention and Probiotic Mix Supplementation on the Gut Microbiota of Elderly Obese Women. Nutrients, 11.
  • Qin, P., Zou, Y., Dai, Y., Luo, G., Zhang, X., and Xiao, L. (2019). Characterization a Novel Butyric Acid-Producing Bacterium Collinsella Aerofaciens Subsp. Shenzhenensis Subsp. Nov. Microorganisms, 7.
  • Bag, (2017), Genome Announc., 5, pp. e01361-17, 10.1128/genomeA.01361-17
  • Duranti, (2020), Sci. Rep., 10, pp. 14112, 10.1038/s41598-020-70986-z
  • Derrien, (2022), Trends Microbiol., 30, pp. 940, 10.1016/j.tim.2022.04.004
  • Cao, (2020), Trends Food Sci. Technol., 99, pp. 295, 10.1016/j.tifs.2020.03.006
  • Rinninella, E., Cintoni, M., Raoul, P., Gasbarrini, A., and Mele, M.C. (2020). Food Additives, Gut Microbiota, and Irritable Bowel Syndrome: A Hidden Track. Int. J. Environ. Res. Public Health, 17.
  • Gerasimidis, (2020), Eur. J. Nutr., 59, pp. 3213, 10.1007/s00394-019-02161-8
  • Shang, (2017), Toxicol. Lett., 279, pp. 87, 10.1016/j.toxlet.2017.07.904
  • Rowland, (2018), Eur. J. Nutr., 57, pp. 1, 10.1007/s00394-017-1445-8
  • Houtman, (2022), Sci. Rep., 12, pp. 3140, 10.1038/s41598-022-07176-6
  • Yoo, J.Y., Groer, M., Dutra, S.V.O., Sarkar, A., and McSkimming, D.I. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8.
  • López-Moreno, A., Suárez, A., Avanzi, C., Monteoliva-Sánchez, M., and Aguilera, M. (2020). Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-Analysis. Nutrients, 12.
  • Qiu, (2018), Anim. Sci. J., 89, pp. 537, 10.1111/asj.12946