Overview of FinancES 2023Financial Targeted Sentiment Analysis in Spanish

  1. Marín, María José 1
  2. Valencia García, Rafael
  3. García-Díaz, José Antonio
  4. Almela Sánchez-Lafuente, Ángela
  5. García-Sánchez, Francisco
  6. Alcaraz Mármol, Gema
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2023

Número: 71

Páginas: 417-423

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

Este artículo resume la tarea FinancES 2023, organizada en el taller IberLEF 2023, dentro del marco de la 39ª Conferencia Internacional de la Sociedad Española de Procesamiento del Lenguaje Natural (SEPLN 2023). El objetivo de esta tarea es mejorar la materia de la minería de opiniones en español dentro del ámbito financiero realizando el análisis de sentimientos desde distintos puntos de vista. En concreto, se proponen y estudian dos tareas que son evaluadas de forma independiente. La primera tarea consiste en (i) identificar el actor principal asociado a una noticia financiera, y (ii) el sentimiento expresado hacia dicho actor. La segunda tarea consiste en determinar el sentimiento de la noticia (i) hacia otras empresas (i.e., otros agentes económicos), y (ii) hacia los consumidores (i.e., la sociedad). El ranking incluye los resultados de 10 equipos diferentes que proponen enfoques novedosos, en su mayoría basados en Transformers y modelos generativos del lenguaje.

Referencias bibliográficas

  • Bowles, S. 2003. Microeconomics: behavior, institutions, and evolution. Princeton University Press.
  • Cañete, J., G. Chaperon, R. Fuentes, J.-H. Ho, H. Kang, and J. Pérez. 2020. Spanish pre-trained bert model and evaluation data. Pml4dc at iclr, 2020:1–10.
  • Cuadrado, J., E. Martinez, J. C. MartinezSantos, and E. Puertas. 2023. Team UTB-NLP at FinancES 2023: Financial Targeted Sentiment Analysis Using a Phonestheme Semantic Approach. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS.org.
  • Goodell, J. W., S. Kumar, P. Rao, and S. Verma. 2022. Emotions and stock market anomalies: a systematic review. Journal of Behavioral and Experimental Finance, page 100722.
  • Hasan, M. M., J. Popp, and J. Oláh. 2020. Current landscape and influence of big data on finance. Journal of Big Data, 7(1):1–17.
  • Honnibal, M. and I. Montani. 2017. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.
  • Jiménez-Zafra, S. M., D. García-Baena, M. ángel García-Cumbreras, and M. García-Vega. 2023. SINAI at FinancESIberLEF2023: Evaluating Popular Tools and Transformers Models for Financial Target Detection and Sentiment Analysis. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS.org.
  • Jiménez-Zafra, S. M., F. Rangel, and M. Montes-y Gómez. 2023. Overview of IberLEF 2023: Natural Language Processing Challenges for Spanish and other Iberian Languages. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS.org.
  • Milne, A. and M. Chisholm. 2013. The prospects for common financial language in wholesale financial services. SSRN Electronic Journal.
  • Nemes, L. and A. Kiss. 2021. Prediction of stock values changes using sentiment analysis of stock news headlines. Journal of Information and Telecommunication, 5(3):375–394.
  • Pan, R., J. A. García-Díaz, F. GarciaSanchez, and R. Valencia-García. 2023. Evaluation of transformer models for financial targeted sentiment analysis in spanish. PeerJ Computer Science, 9:e1377.
  • Porta-Zamorano, J., Y. Torterolo, and A. Moreno-Sandoval. 2023. LLI-UAM Team at FinancES 2023: Noise, Data Augmentation and Hallucinations. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS.org.
  • Rodríguez-García, M. A., A. RiañoMartínez, D. Roldán- álvarez, and S. Montalvo-Herranz. 2023. URJC-Team at FinancES 2023: Financial Targeted Sentiment Analysis in Spanish Combining Transformers. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS.org.
  • Salas-Zárate, M. d. P. and M. A. ParedesValverde. 2023. Team ITST at FinancES 2023: A Psycholinguistic-based Sentiment Analysis Approach. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS.org.
  • Tausczik, Y. R. and J. W. Pennebaker. 2010. The psychological meaning of words: Liwc and computerized text analysis methods. Journal of language and social psychology, 29(1):24–54.
  • Thin, D. V., D. N. Ba, D. N. Hao, and N. L.-T. Nguyen. 2023. ABCD Team at FinancES 2023: An Unified Generative Framework for the Financial Targeted Sentiment Analysis in Spanish. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS.org.
  • Xue, L., N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, and C. Raffel. 2021. mt5: A massively multilingual pre-trained text-to-text transformer. In K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Túr, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, editors, Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pages 483–498. Association for Computational Linguistics.