Estudio de la bioactividad in vitro e in vivo de brotes de brócoli ricos en glucosinolatos/isotiocianatos

  1. Nieves Baenas Navarro 1
  2. Diego A. Moreno Fernández 1
  3. Cristina García Viguera 1
  1. 1 Laboratorio de Fitoquímica y Alimentos Saludables. Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC
Revista:
Nereis: revista iberoamericana interdisciplinar de métodos, modelización y simulación

ISSN: 1888-8550

Año de publicación: 2018

Número: 10

Páginas: 69-78

Tipo: Artículo

Otras publicaciones en: Nereis: revista iberoamericana interdisciplinar de métodos, modelización y simulación

Resumen

Los brotes de brócoli son alimentos de gran interés debido a su mayor contenido en nutrientes y compuestos bioactivos en comparación con el vegetal adulto. Poseen alto contenido en glucosinolatos, destacando la glucorafanina, que se encuentra en mayor concentración, cuyo producto de hidrólisis, el isotiocianato sulforafano, ha demostrado poseer distintas actividades biológicas, como son la antiinflamatoria, antioxidante y un efecto antiproliferativo. El objetivo de este trabajo fue estudiar el efecto antiproliferativo de estos brotes como matriz vegetal, así como sus compuestos bioactivos puros, la glucorafanina y el sulforafano, demostrando una mayor bioactividad del vegetal como alimento completo. Por otro lado, se demostró el efecto antinociceptivo (analgésico) de estos brotes en modelos de roedores in vivo, abriendo una línea de investigación interesante para el estudio de los mecanismos de acción de estos compuestos naturales como fitoterapéuticos.

Referencias bibliográficas

  • Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine. 2012;18(6):337-47.
  • Jeffery EH, Keck AS. Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Molecular nutrition & food research. 52 Suppl 1. 2008;S7-17.
  • Wagner AE, Terschluesen AM, Rimbach G. Health Promoting Effects of Brassica-Derived Phytochemicals: From Chemopreventive and Anti-Inflammatory Activities to Epigenetic Regulation. Oxidative Medicine and Cellular Longevity. 2013;12.
  • Cevallos-Casals BA, Cisneros-Zevallos L. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chemistry. 2010;119(4):1485-90.
  • Hanlon PR, Barnes DM. Phytochemical Composition and Biological Activity of 8 Varieties of Radish (Raphanus sativus L.) Sprouts and Mature Taproots. Journal of Food Science. 2011;76(1): C185-C92.
  • Angelino D, Jeffery E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. Journal of Functional Foods. 2014;7:67-76.
  • Clarke JD, Ho E. Dashwood RH. Multi-targeted prevention of cancer by sulforaphane, Cancer letters. 2008;269(2):291-304.
  • La Marca M, Beffy P, Della Croce C, Gervasi PG, Iori R, Puccinelli E et al. Structural influence of isothiocyanates on expression of cytochrome P450, phase II enzymes, and activation of Nrf2 in primary rat hepatocytes. Food and Chemical Toxicology. 2012;50(8):2822-30.
  • Folkard DL, Marlow G, Mithen RF, Ferguson LR. Effect of Sulforaphane on NOD2 via NF-κB: implications for Crohn’s disease. Journal of Inflammation. 2015;12(1):1-6.
  • Baenas N, Moreno DA, García-Viguera C. Selecting sprouts of brassicaceae for optimum phytochemical composition. Journal of Agricultural and Food Chemistry. 2012;60(45):11409-20.
  • Cramer JM, Jeffery EH. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutrition and cancer. 2011;63(2):196-201.
  • Domínguez-Perles R, Medina S, Moreno DA, García-Viguera C, Ferreres F, Gil-Izquierdo A. A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food Chemistry. 2014;143:132-8.
  • Baenas N, Silván JM, Medina S, de Pascual-Teresa S, García-Viguera C, Moreno DA. Metabolism and antiproliferative effects of sulforaphane and broccoli sprouts in human intestinal (Caco-2) and hepatic (HepG2) cells. Phytochemistry Reviews. 2015:14(6):1035-44.
  • Baenas N, González-Trujano ME, Guadarrama-Enríquez O, Pellicer F, García-Viguera C, Moreno DA. Broccoli sprouts in analgesia-preclinical: In vivo studies. Food and Function. 2017;8(1):167-76.
  • Wheeler-Aceto H, Porreca F, Cowan A. The rat paw formalin test: comparison of noxious agents. Pain. 1990;40(2):229-38.
  • Collier HO, Dinneen LC, Johnson CA, Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. British journal of pharmacology and chemotherapy. 1968;32(2):295-310.
  • Aires A, Carvalho R, Rosa E. Glucosinolate composition of brassica is affected by postharvest, food processing and myrosinase activity. Journal of Food Processing and Preservation. 2012;36(3):214-24.
  • Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. Journal of Biological Chemistry. 2001;276(34):32008-15.
  • Munday R, Munday CM. Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: comparison of allyl isothiocyanate with sulforaphane and related compounds. Journal of Agricultural and Food Chemistry. 2004;52(7):1867-71.
  • Zhao CS, Tao YX, Tall JM, Donovan DM, Meyer RA, Raja SN. Role of micro-opioid receptors in formalin-induced pain behavior in mice. Experimental neurology. 2003;184(2):839-45.
  • Bell RF, Borzan J, Kalso E, Simonnet G. Food, pain, and drugs: does it matter what pain patients eat? Pain. 2012;153(10):1993-6.
  • Medina S, Domínguez-Perles R, Moreno DA, García-Viguera C, Ferreres F, Gil JI. et al. The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food Chemistry. 2015;173:1187-94.