Interpolación de espacios de operadores, Q-concavidad y la propiedad de Orlicz
- Óscar Blasco de la Cruz Zuzendaria
- Fernando Cobos Díaz Zuzendaria
Defentsa unibertsitatea: Universidad Complutense de Madrid
Fecha de defensa: 2000(e)ko maiatza-(a)k 26
- Fernando Bombal Gordón Presidentea
- José Luis González Llavona Idazkaria
- José Luis Torrea Hernández Kidea
- Jesús Miguel Bastero Eleizalde Kidea
- María Jesús Carro Rossell Kidea
Mota: Tesia
Laburpena
La memoria se refiere a cuestiones de la Teoria de Interpolación, Teoría de operadores y Geometría de espacios de Banach, En la primera parte se estudia la interpolación de espacios de operadores extendiendo en diversas direcciones un resultado clásico de Peetre sobre interpolación de espacios de operadores acotados. Se demuestran fórmulas similares para espacios de operadores que sean componentes de un ideal causi-normado arbitrario. Algunas veces se supone que el par de espacios de Banach es cuasi-linelizable, y otras veces que el ideal es inyectivo o sobreyectivo. Se analiza posteriormente la necesidad de esas hipótesis. Como aplicación de dichas fórmulas se obtienen resultados que complementan otros anteriores de Kouba y Ovchinnikov. En la segunda parte se consideran distintos conceptos que extienden la noción de operador p-sumante debida a Pietch. Se estudian operadores cuyo espacio de partida es a su vez un espacio de operadores lineales y continuos. Concretamente se introduce la noción de operador (p,L)-sumante, se estudian sus propiedades, distintas caracterizaciones, asi como distintos ejemplos que ponen de manifiesto la riqueza de esta nueva clase. Finalmente se estudia la relación entre las nociones de q-concavidad,(q,1)-concavidad, q-propiedad de Orlicz y cotipo q, complementando resultados previos de Talagrand. En el Capitulo 4 de la memoria se da un método general de construcción de espacios de sucesiones simétricos que son (q,1)-concavos pero no son q-cóncavos para cualquer valor de q, 1<q< , y que en el rango 2<- q< tienen la q-propiedad de Orliez.