Publikationen, an denen er mitarbeitet Alberto Huertas Celdran (117)

2024

  1. A Review of Eight Reasons Why Cybersecurity on Novel Generations of Brain-Computer Interfaces Must Be Prioritized

    IX Jornadas Nacionales de Investigación En Ciberseguridad

  2. A Summary of Adversarial Attacks and Defenses on ML- and Hardware-based IoT Device Fingerprinting and Identification

    IX Jornadas Nacionales de Investigación En Ciberseguridad

  3. A Summary of RansomAI: AI-powered Ransomware for Stealthy Encryption

    IX Jornadas Nacionales de Investigación En Ciberseguridad

  4. Adversarial attacks and defenses on ML- and hardware-based IoT device fingerprinting and identification

    Future Generation Computer Systems, Vol. 152, pp. 30-42

  5. Analyzing the robustness of decentralized horizontal and vertical federated learning architectures in a non-IID scenario

    Applied Intelligence, Vol. 54, Núm. 8, pp. 6637-6653

  6. Análisis del impacto de ciberataques neuronales aplicados a la visión

    IX Jornadas Nacionales de Investigación En Ciberseguridad

  7. Corrigendum to “Fedstellar: A platform for decentralized federated learning” [Expert Syst. Appl. 242 (2024) 122861] (S0957417423033638), (10.1016/j.eswa.2023.122861)

    Expert Systems with Applications

  8. CyberSpec: Behavioral Fingerprinting for Intelligent Attacks Detection on Crowdsensing Spectrum Sensors

    IEEE Transactions on Dependable and Secure Computing, Vol. 21, Núm. 1, pp. 284-297

  9. Evaluating the impact of contextual information on the performance of intelligent continuous authentication systems

    ACM International Conference Proceeding Series

  10. FederatedTrust: A solution for trustworthy federated learning

    Future Generation Computer Systems, Vol. 152, pp. 83-98

  11. Fedstellar: A Platform for Decentralized Federated Learning

    Expert Systems with Applications, Vol. 242

  12. Impact of neural cyberattacks on a realistic neuronal topology from the primary visual cortex of mice

    Wireless Networks

  13. Mitigación de Ataques Bizantinos usando Modelos Históricos en Aprendizaje Federado Descentralizado

    IX Jornadas Nacionales de Investigación En Ciberseguridad

  14. Mitigating communications threats in decentralized federated learning through moving target defense

    Wireless Networks

  15. NeuronLab: BCI framework for the study of biosignals

    Neurocomputing, Vol. 598

  16. Privacy-preserving hierarchical federated learning with biosignals to detect drowsiness while driving

    Neural Computing and Applications, Vol. 36, Núm. 32, pp. 20425-20437

  17. RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-Day Attacks in IoT

    IEEE Transactions on Information Forensics and Security, Vol. 19, pp. 5520-5529

  18. Robust Federated Learning for execution time-based device model identification under label-flipping attack

    Cluster Computing, Vol. 27, Núm. 1, pp. 313-324

  19. Single-board device individual authentication based on hardware performance and autoencoder transformer models

    Computers and Security, Vol. 137

  20. Studying Drowsiness Detection Performance While Driving Through Scalable Machine Learning Models Using Electroencephalography

    Cognitive Computation, Vol. 16, Núm. 3, pp. 1253-1267