Ingeniería Aplicada
University of Mohaghegh Ardabili
Ardabīl, IránUniversity of Mohaghegh Ardabili-ko ikertzaileekin lankidetzan egindako argitalpenak (22)
2024
-
Classification of Healthy and Frozen Pomegranates Using Hyperspectral Imaging and Deep Learning
Horticulturae, Vol. 10, Núm. 1
-
Counterfeit Detection of Iranian Black Tea Using Image Processing and Deep Learning Based on Patched and Unpatched Images
Horticulturae, Vol. 10, Núm. 7
2023
-
Attention Mechanisms in Convolutional Neural Networks for Nitrogen Treatment Detection in Tomato Leaves Using Hyperspectral Images
Electronics (Switzerland), Vol. 12, Núm. 12
-
Comparison of 2D and 3D convolutional neural networks in hyperspectral image analysis of fruits applied to orange bruise detection
Journal of Food Science, Vol. 88, Núm. 12, pp. 5149-5163
2022
-
Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves
Remote Sensing, Vol. 14, Núm. 24
-
Metaheuristic algorithms in visible and near infrared spectra to detect excess nitrogen content in tomato plants
Journal of Near Infrared Spectroscopy, Vol. 30, Núm. 4, pp. 197-207
-
Using metaheuristic algorithms to improve the estimation of acidity in Fuji apples using NIR spectroscopy
Ain Shams Engineering Journal, Vol. 13, Núm. 6
2021
-
Early detection of excess nitrogen consumption in cucumber plants using hyperspectral imaging based on hybrid neural networks and the imperialist competitive algorithm
Agronomy, Vol. 11, Núm. 3
-
Estimation of nitrogen content in cucumber plant (Cucumis sativus L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions
Chemometrics and Intelligent Laboratory Systems, Vol. 217
-
Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques
Foods, Vol. 10, Núm. 5
-
Nondestructive nitrogen content estimation in tomato plant leaves by Vis-NIR hyperspectral imaging and regression data models
Applied Optics, Vol. 60, Núm. 30, pp. 9560-9569
-
One‐dimensional convolutional neural networks for hyperspectral analysis of nitrogen in plant leaves
Applied Sciences (Switzerland), Vol. 11, Núm. 24
2020
-
Estimation of different ripening stages of Fuji apples using image processing and spectroscopy based on the majority voting method
Computers and Electronics in Agriculture, Vol. 176
-
Estimation of the constituent properties of red delicious apples using a hybrid of artificial neural networks and artificial bee colony algorithm
Agronomy, Vol. 10, Núm. 2
2019
-
An automatic non-destructive method for the classification of the ripeness stage of red delicious apples in orchards using aerial video
Agronomy, Vol. 9, Núm. 2
-
Automatic classification of chickpea varieties using computer vision techniques
Agronomy, Vol. 9, Núm. 11
-
Comparison of different classifiers and the majority voting rule for the detection of plum fruits in garden conditions
Remote Sensing, Vol. 11, Núm. 21
2018
-
A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms
Computers in Industry, Vol. 98, pp. 80-89
-
A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms
Information Processing in Agriculture, Vol. 5, Núm. 1, pp. 162-172
-
Automatic chickpea classification using computer vision techniques
IX Congresso Ibérico de Agroengenharia: Livro de Atas