XVII Premio “Ilustre Colegio Oficial de Veterinarios de Madrid” Monitorización de la circulación de Leishmania Infantum en Primates no humanos en cautividad en España
- Jesús Barbero Moyano 1
- Remigio Martínez Pérez 1
- Moisés Gonzálvez Juan 1
- Inmaculada Moreno Iruela 1
- Adrián Beato Benítez 1
- David Cano Terriza 1
- Rocío Canales Merino 1
- Andrea Ferreiro Prado 1
- María Ángeles Risalde Moya 1
- Ignacio Antonio García Bocanegra 1
-
1
Universidad de Córdoba
info
Année de publication: 2023
Volumen: 31
Número: 31
Pages: 19-43
Type: Article
Résumé
Cases of Leishmania infantum infection have recently been reported in non- human primates (NHPs) in Spain. The aim of this study was to determine exposure and risk factors associated with L. infantum infection in NHPs housed in captivity centers in Spain. Between 2007-2023, sera from 252 NHPs were collected at 15 centers. Indirect immunofluorescence was used to detect the presence of antibodies against L. infantum. In addition, hair samples from 78 individuals were tested for Leishmania kDNA by real-time quantitative PCR. Anti-Leishmania antibodies were detected in 4% (10/252; 95% CI: 1.6-6.4) of the NHPs tested. Twenty-two NHPs were longitudinally sampled: one ring-tailed lemur (Lemur catta) seroconverted and a seropositive Bornean orangutan (Pongo pymaeus pymaeus) increased antibody titers during the study period. L. infantum kDNA was found in 62.8% (49/78; 95% CI: 52.1-73.6) of animals. Phylogenetic analysis revealed high homology between the sequence obtained and strains previously isolated in humans, dogs and wildlife species in Spain. This is the first report of Leishmania kDNA detection in NHP hair samples. The results indicate that hair samples could be a useful, non-invasive method of detection of L. infantum infection in these species. This is also the first large-scale survey of L. infantum conducted in NHPs species in Europe. The main risk factors associated with L. infantum infection were age (≥5 years old) and body size (large). Our results demonstrate widespread circulation of this parasite among NHPs housed in Spain. Control programs should be implemented to minimize the risk of NHP exposure to L. infantum
Références bibliographiques
- Alvar, J., Vélez, I.D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., Boer, M. den, the W.L.C. Team., 2012. Leishmaniosis Worldwide and Global Estimates of Its Incidence. PLOS ONE 7, e35671. https://doi.org/10.1371/journal.pone.0035671
- Arce, A., Estirado, A., Ordobas, M., Sevilla, S., García, N., Moratilla, L., Fuente, S. de la, Martínez, A.M., Pérez, A.M., Aránguez E., Iriso, A., Sevillano, O., Bernal, J., Vilas, F., 2013. Re-emergence of leishmaniosis in Spain: community outbreak Madrid, Spain, 2009 to 2012. Euro Surveill., 18, 20546. https://doi.org/10.2807/1560-7917.ES2013.18.30.20546
- Azami-Conesa, I., Martínez-Díaz, R.A., González, F., GómezMuñoz, M.T., 2020. First detection of Leishmania infantum in common urban bats Pipistrellus pipistrellus in Europe. Res. Vet. Sci., 132, 172–176. https://doi.org/10.1016/j.rvsc.2020.06.019
- Belinchón-Lorenzo, S., Iniesta, V., Parejo, J.C., Fernández-Cotrina, J., Muñoz- Madrid, R., Soto, M., Alonso, C., Gómez Nieto, L.C., 2013. Detection of Leishmania infantum kinetoplast minicircle DNA by Real Time PCR in hair of dogs with leishmaniosis. Vet. Parasitol., 192, 43–50. https://doi.org/10.1016/j.vetpar.2012.11.007
- Belinchón-Lorenzo, S., Muñoz-Madrid, R., Grano, F.G., Iniesta, V., Fernández- Cotrina, J., Parejo, J.C., Monroy, I., Baz, V., Gómez-Luque, A., Barneto, J.L., Bordini, C.G.G., Machado, G.F., Gómez-Nieto, L.C., 2019. Application of qPCR method to hair and cerumen samples for the diagnosis of canine leishmaniosis in Araçatuba, Brazil. Vet. Parasitol. Reg. Stud., 15, 100267. https://doi.org/10.1016/j.vprsr.2019.100267
- Bueno, M.G., 2012. Pesquisa de Leishmania spp. e Plasmodium spp. em primatas neotropicais provenientes de regiões de Mata Atlântica e Amazônia impactadas por ações antrópicas: investigação in situ e ex situ (Tesis doctoral).São Paulo: Faculdadde Medicina Veterinaria y Zootecnia, Universidad de São Paulo. https://doi.org/10.11606/T.10.2012.tde-11102012-142919
- Alten, B., Maia, Tsertsvadze, N., Tskhvaradze, L., Giorgobiani, E., Gramiccia, M., Volf, P., Gradoni, L., 2016. Seasonal Dynamics of Phlebotomine Sand Fly Species Proven Vectors of Mediterranean Leishmaniosis caused by Leishmania infantum. PLOS Negl. Trop. Dis., 10, e0004458. https://doi.org/10.1371/journal.pntd.0004458
- Cantos-Barreda, A., Navarro, R., Pardo-Marín, L., MartínezSubiela, S., Ortega, E., Cerón, J.J., Tecles, F., Escribano, D., 2020. Clinical leishmaniosis in a captive Eurasian otter (Lutra lutra) in Spain: a case report. BMC Vet. Res., 16, 312. https://doi.org/10.1186/s12917-020-02509-x
- Caraguel, C.G.B., Stryhn, H., Gagné, N., Dohoo, I.R., Hammell, K.L., 2011. Selection of a cut-off value for real-time polymerase chain reaction results to fit a diagnostic purpose: Analytical and Epidemiologic Approaches. J. Vet. Diagn. Invest., 23, 2–15. https://doi.org/10.1177/104063871102300102
- Cardoso, L., Schallig, H., Persichetti, M.F., Pennisi, M.G., 2021. New epidemiological aspects of animal Leishmaniosis in Europe: The role of vertebrate hosts other than dogs. Pathogens, 10, 307. https://doi.org/10.3390/pathogens10030307
- Cavalera, M.A., Iatta, R., Panarese, R., Mendoza-Roldan, J.A., Gernone, F., Otranto, D., Paltrinieri, S., Zatelli, A., 2021. Seasonal variation in canine anti-Leishmania infantum antibody titres. Vet. J., 271, 105638. https://doi.org/10.1016/j.tvjl.2021.105638
- Chicharro, C., Llanes-Acevedo, I.P., García, E., Nieto, J., Moreno, J., Cruz, I., 2013. Molecular typing of Leishmania infantum isolates from a leishmaniosis outbreak in Madrid, Spain, 2009 to 2012. Euro Surveill., 18, 20545. https://doi.org/10.2807/1560-7917.ES2013.18.30.20545
- Cortes, S., Rolão, N., Ramada, J., Campino, L., 2004. PCR as a rapid and sensitive tool in the diagnosis of human and canine leishmaniosis using Leishmania donovani s.l.-specific kinetoplastid primers. Trans. R. Soc. Trop. Med. Hyg., 98, 12–17. https://doi.org/10.1016/S0035-9203(03)00002-6
- Cortes, S.J. da C., 2008. Diversidade genética da população parasitária de Leishmania em Portugal (Tesis doctoral). Instituto de Higiene y Medicina Tropical.
- Dantas-Torres, F., da Silva Sales, K.G., Gomes da Silva, L., Otranto, D., Figueredo, L.A., 2017. Leishmania-FAST15: A rapid, sensitive and low-cost real-time PCR assay for the detection of Leishmania infantum and Leishmania braziliensis kinetoplast DNA in canine blood samples. Mol. Cell. Probes, 31, 65–69. https://doi.org/10.1016/j.mcp.2016.08.006
- Dantas-Torres, F., Miró, G., Bowman, D.D., Gradoni, L., Otranto, D., 2019. Culling dogs for zoonotic visceral leishmaniosis control: The wind of change. Trends Parasitol., 35, 97–101. https://doi.org/10.1016/j.pt.2018.11.005
- de Sousa Gonçalves, R., Franke, C.R., Magalhães-Junior, J.T., Souza, B.M.P.S., Solcà, M.S., Larangeira, D.F., Barrouin-Melo, S.M., 2016. Association between Leishmania infantum DNA in the hair of dogs and their infectiousness to Lutzomyia longipalpis. Vet. Parasitol., 232, 43–47. https://doi.org/10.1016/j.vetpar.2016.11.010
- Díaz-Sáez, V., Merino-Espinosa, G., Morales-Yuste, M., CorpasLópez, V., Pratlong, F., Morillas-Márquez, F., Martín-Sánchez, J., 2014. High rates of Leishmania infantum and Trypanosoma nabiasi infection in wild rabbits (Oryctolagus cuniculus) in sympatric and syntrophic conditions in an endemic canine leishmaniosis area: Epidemiological consequences. Vet. Parasitol., 202, 119–127. https://doi.org/10.1016/j.vetpar.2014.03.029
- Francino, O., Altet, L., Sánchez-Robert, E., Rodriguez, A., Solano-Gallego, L., Alberola, J., Ferrer, L., Sánchez, A., Roura, X., 2006. Advantages of real- time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet. Parasitol., 137, 214–221. https://doi.org/10.1016/j.vetpar.2006.01.011
- Gálvez, R., Montoya, A., Cruz, I., Fernández, C., Martín, O., Checa, R., Chicharro, C., Migueláñez, S., Marino, V., Miró, G., 2020. Latest trends in Leishmania infantum infection in dogs in Spain, Part I: mapped seroprevalence and sand fly distributions. Parasit. Vectors., 13, 204. https://doi.org/10.1186/s13071-020-04081-7
- García, N., Moreno, I., Alvarez, J., de la Cruz, M.L., Navarro, A., Pérez-Sancho, M., García-Seco, T., Rodríguez-Bertos, A., Conty M.L., Toraño, A., Prieto, A., Domínguez, L., Domínguez, M.,2014. Evidence of Leishmania infantum Infection in Rabbits (Oryctolagus cuniculus) in a Natural Area in Madrid, Spain. Biomed Res. Int. 2014, e318254. https://doi.org/10.1155/2014/318254
- Gazzonis, A.L., Bertero, F., Moretta, I., Morganti, G., Mortarino, M., Villa, L., Zanzani, S.A., Morandi, B., Rinnovati, R., Vitale, F., Manfredi, M.T., Cardoso, L., Veronesi, F., 2020. Detecting antibodies to Leishmania infantum in horses from areas with different epizooticity levels of canine leishmaniosis and a retrospectiverevision of Italian data. Parasit. Vectors., 13, 530. https://doi.org/10.1186/s13071-020-04385-8
- Guiraldi, 2020. Pesquisa de Leishmania spp. em primatas de cativeiro de cinco regiões brasileiras por diferentes técnicas de diagnóstico (Doctoral dissertation). Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu (Brasil)
- Guiraldi, L.M., dos Santos, W.J., Manzini, S., Taha, N. el H.A., Aires, I.N., Ribeiro, E., Tokuda, M., de Medeiros, M.I.M., Richini-Pereira, V.B., Lucheis, S.B., 2022. Identification of Leishmania infantum and Leishmania braziliensis in captive primates from a zoo in Brazil. Am. J. Primatol., 84, e23376. https://doi.org/10.1002/ajp.23376
- Hasegawa, M., Kishino, H., Yano, T., 1985. Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol., 22, 160–174. https://doi.org/10.1007/BF02101694
- Iatta, R., Furlanello, T., Colella, V., Tarallo, V.D., Latrofa, M.S., Brianti, E., Trerotoli, P., Decaro, N., Lorusso, E., Schunack, B., Mirò, G., Dantas-Torres, F., Otranto, D., 2019. A nationwide survey of Leishmania infantum infection in cats and associated risk factors in Italy. PLOS Negl. Trop. Dis., 13, e0007594. https://doi.org/10.1371/journal.pntd.0007594
- Iniesta, V., Belinchón-Lorenzo, S., Soto, M., Fernández-Cotrina, J., Muñoz-Madrid, R., Monroy, I., Baz, V., Gómez-Luque, A., Parejo, J.C., Alonso, C., Nieto, L.C.G., 2013. Detection and chronology of parasitic kinetoplast DNA presence in hair of experimental Leishmania major infected BALB/c mice by Real Time PCR. Acta Trop., 128, 468–472. https://doi.org/10.1016/j.actatropica.2013.07.007
- Lopes, K.F.C., Delai, R.M., Zaniolo, M.M., dos Santos, I.C., Pachaly, E.M.V., Pachaly, J.R., Tramontin, R. dos S., Bernardes, J.C., Pereira, U. de P., Caldart, E.T., Mitsuka-Breganó, R., Navarro, I.T., Gonçalves, D.D., 2022. Urban capuchin monkeys Sapajus nigritus (Goldfuss, 1809) (Primates, Cebidae) as environmental bioindicators of leishmaniosis. Transb. Emerg. Dis., 69, 2320–2325. https://doi.org/10.1111/tbed.14247
- Luppi, M.M., Malta, M.C.C., Silva, T.M.A., Silva, F.L., Motta, R.O.C., Miranda, I., Ecco, R., Santos, R.L., 2008. Visceral leishmaniosis in captive wild canids in Brazil. Vet. Parasitol., 155, 146–151. https://doi.org/10.1016/j.vetpar.2008.04.024
- Malta, M.C.C., Tinoco, H.P., Xavier, M.N., Vieira, A.L.S., Costa, É.A., Santos, R.L., 2010. Naturally acquired visceral leishmaniosis in non-human primates in Brazil. Vet. Parasitol., 169, 193–197.https://doi.org/10.1016/j.vetpar.2009.12.016
- Martín-Sánchez, J., Rodríguez-Granger, J., Morillas-Márquez, F., Merino- Espinosa, G., Sampedro, A., Aliaga, L., Corpas-López, V., Tercedor- Sánchez, J., Aneiros-Fernández, J., Acedo-Sánchez, C., Porcel-Rodríguez, L., Díaz-Sáez, V., 2020. Leishmaniosis due to Leishmania infantum: Integration of human, animal and environmental data through a One Health approach. Transb. Emerg. Dis., 67, 2423–2434. https://doi.org/10.1111/tbed.13580
- Miró, G., Troyano, A., Montoya, A., Fariñas, F., Fermín, M.L., Flores, L., Rojo, C., Checa, R., Gálvez, R., Marino, V., Fragío, C., Martínez-Nevado, E., 2018. First report of Leishmania infantum infection in the endangered orangutan (Pongo pygmaeus pygmaeus) in Madrid, Spain. Parasit. Vectors., 11, 185. https://doi.org/10.1186/s13071-018-2772-1
- Montoya, A., Quadros, L.P. de, Mateo, M., Hernández, L., Gálvez, R., Alcántara, G., Checa, R., Jiménez, M.Á., Chicharro, C., Cruz, I., Miró, G., 2016. Leishmania infantum infection in Bennett’s wallabies (Macropus rufogriseus rufogriseus) in a spanish wildlife park. J. Zoo Wildl. Med., 47, 586–593. https://doi.org/10.1638/2014-0216.1
- Moreno, I., Álvarez, J., García, N., de la Fuente, S., Martínez, I., Marino, E., Toraño, A., Goyache, J., Vilas, F., Domínguez, L., Domínguez, M., 2014. Detection of anti-Leishmania infantum antibodies in sylvatic lagomorphs from an epidemic area of Madrid using the indirect immunofluorescence antibody test. Vet. Parasitol., 199, 264–267. https://doi.org/10.1016/j.vetpar.2013.10.010
- Muñoz, C., Martínez-de la Puente, J., Figuerola, J., Pérez-Cutillas, P., Navarro, R., Ortuño, M., Bernal, L.J., Ortiz, J., Soriguer, R., Berriatua, E., 2019. Molecular xenomonitoring and host identification of Leishmania sand fly vectors in a Mediterranean periurban wildlife park. Transb. Emerg. Dis., 66, 2546–2561. https://doi.org/10.1111/tbed.13319
- Muñoz-Madrid, R., Belinchón-Lorenzo, S., Iniesta, V., Fernández-Cotrina, J., Parejo, J.C., Serrano, F.J., Monroy, I., Baz, V.,Gómez-Luque, A., Gómez- Nieto, L.C., 2013. First detection of Leishmania infantum kinetoplast DNA in hair of wild mammals: Application of qPCR method to determine potential parasite reservoirs. Acta Trop., 128, 706–709. https://doi.org/10.1016/j.actatropica.2013.08.009
- Oliveira, A.R. de, Pinheiro, G.R.G., Tinoco, H.P., Loyola, M.E., Coelho, C.M., Dias, E.S., Monteiro, É.M., Silva, F. de O.L. e, Pessanha, A.T., Souza, A.G.M., Pereira, N.C.L., Gontijo, N.F., Fujiwara, R.T., Paixão, T.A. da, Santos, R.L., 2019. Competence of non-human primates to transmit Leishmania infantum to the invertebrate vector Lutzomyia longipalpis. PLOS Negl. Trop. Dis., 13, e0007313. https://doi.org/10.1371/journal.pntd.0007313
- Ortega, M.V., Moreno, I., Domínguez, M., de la Cruz, M.L., Martín, A.B., Rodríguez-Bertos, A., López, R., Navarro, A., González, S., Mazariegos, M., Goyache, J., Domínguez, L., García, N., 2017. Application of a specific quantitative real-time PCR (qPCR) to identify Leishmania infantum DNA in spleen, skin and hair samples of wild Leporidae. Vet. Parasitol. 243, 92–99. https://doi.org/10.1016/j.vetpar.2017.05.015
- Ortuño, M., Latrofa, M.S., Iborra, M.A., Pérez-Cutillas, P., Bernal, L.J., Risueño, J., Muñoz, C., Bernal, A., Sánchez-Lopez, P.F., Segovia, M., Annoscia, G., Maia, C., Cortes, S., Campino, L., Otranto, D., Berriatua, E., 2019. Genetic diversity and phylogenetic relationships between Leishmania infantum from dogs, humans and wildlife in south-east Spain. Zoonoses Public Health, 66, 961–973. https://doi.org/10.1111/zph.12646
- Paiz, L.M., Motoie, G., Richini-Pereira, V.B., Langoni, H., Menozzi, B.D., Tolezano, J.E., Donalisio, M.R., 2019. Antibodies and molecular detection of Leishmania (Leishmania) infantum in samples of free-ranging marmosets (primates: Callitrichidae: Callithrix spp.) in an area of canine visceral leishmaniosis in Southeastern Brazil. Vector Borne Zoonotic Dis., 19, 249– 254.https://doi.org/10.1089/vbz.2018.2348
- Peacock, C.S., ., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S., Bringaud, F., Baldauf, S.L., Faulconbridge, A., Jeffares, D., Depledge, D.P., Oyola, S.O., Hilley, J.D., Brito, L.O., Tosi, L.R.O., Barrell, B., Cruz, A.K., Mottram, J.C., Smith, D.F., Berriman, M., 2007. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet., 39, 839–847. https://doi.org/10.1038/ng2053
- Pérez-Brígido, C.D., Romero-Salas, D., Pardío-Sedas, V.T., CruzRomero, A., González-Hernández, M., Delprá-Cachulo, J.M., Ascencio, M., Florin- Christensen, M., Schnittger, L., Rodríguez, A.E., 2021. Molecular evidence of Leishmania spp. in spider monkeys (Ateles geoffroyi) from The Tuxtlas Biosphere Reserve, Veracruz, Mexico. Vet. Res. Commun. https://doi.org/10.1007/s11259-021-09842-y
- Pinto, M.C., Campbell-Lendrum, D.H., Lozovei, A.L., Teodoro, U., Davies, C.R., 2001. Phlebotomine sandfly responses to carbon dioxide and human odour in the field. Med. Vet. Entomol. 15,132–139. https://doi.org/10.1046/j.1365- 2915.2001.00294.x
- R Core Team, 2022. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
- Reis, F.C., Minuzzi-Souza, T.T.C., Neiva, M., Timbó, R.V., de Morais, I.O.B., de Lima, T.M., Hecht, M., Nitz, N., GurgelGonçalves, R., 2020. Trypanosomatid infections in captive wild mammals and potential vectors at the Brasilia Zoo, Federal District, Brazil. Vet. Med. Sci., 6, 248–256. https://doi.org/10.1002/vms3.216
- Risueño, J., Ortuño, M., Pérez-Cutillas, P., Goyena, E., Maia, C.,Cortes, S., Campino, L., Bernal, L.J., Muñoz, C., Arcenillas, I., -Rondán, F.J., Gonzálvez, M., Collantes, F., Ortiz, J., Martínez-Carrasco, C., Berriatua, E., 2018. Epidemiological and genetic studies suggest a common Leishmania infantum transmission cycle in wildlife, dogs and humans associated to vector abundance in Southeast Spain. Vet. Parasitol., 259, 61–67. https://doi.org/10.1016/j.vetpar.2018.05.012
- Rombolà, P., Barlozzari, G., Carvelli, A., Scarpulla, M., Iacoponi, F., Macrì, G., 2021. Seroprevalence and risk factors associated with exposure to Leishmania infantum in dogs, in an endemic Mediterranean region. PLOS ONE., 16, e0244923. https://doi.org/10.1371/journal.pone.0244923
- Sanz, G., Jiménez-Marín, Á., Barbancho, M., Garrido, J.J., 2012. Molecular cloning, characterization and gene expression of the full length cDNA encoding the porcine CD11b(αM) and chromosomal localization of the porcine CD11a(αL)–CD11b(αM)–CD11b(αD) gene cluster. Vet. Immunol. Immunopathol., 145, 505–510. https://doi.org/10.1016/j.vetimm.2011.10.014
- Souza, T.D., Turchetti, A.P., Fujiwara, R.T., Paixão, T.A., Santos, R.L., 2014. Visceral leishmaniosis in zoo and wildlife. Vet. Parasitol., 200, 233–241. https://doi.org/10.1016/j.vetpar.2013.12.025
- Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol., 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
- Thompson, R.C.A., 2013. Parasite zoonoses and wildlife: One health, spillover and human activity. Int. J. Parasitol. 43 1079–1088. https://doi.org/10.1016/j.ijpara.2013.06.007
- Thrusfield, M., Christley, R., 2018. Veterinary Epidemiology, 4th ed. ed. Wiley- Blackwell: Hoboken, NJ, USA.
- Voltarelli, E.M., Arraes, S., Perles, Lonardoni, M.V.C., Teodoro, U., Silveira, T.G.V., 2009. Serological survey for Leishmania sp. infection in wild animals from the municipality of Maringá, Paraná state, Brazil. J. Venom. Anim. Toxins incl. Trop. Dis., 15, 732–744. https://doi.org/10.1590/S1678-91992009000400011
- OMS (2023). Leishmaniasis. URL: https://www.who.int/es/news-room/fact-sheets/detail/leishmaniasis (último acceso 10-10-23).
- OMSA (2021). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2021. Chapter 3.1.11. Leishmaniosis [WWW Document]. URL: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/ (último acceso 15-10-23).