Computing the relative position of a parabola and an ellipse without intersecting them

  1. Jorge Caravantes 1
  2. Diaz-Toca, Gema M. 2
  3. Mario Fioravanti 3
  4. Laureano Gonzalez-Vega 4
  1. 1 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

  2. 2 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  3. 3 Universidad de Cantabria
    info

    Universidad de Cantabria

    Santander, España

    ROR https://ror.org/046ffzj20

  4. 4 CUNEF Universidad
Livre:
EACA 2022: XVII Encuentro de Álgebra Computacional y Aplicaciones
  1. Galindo Pastor, Carlos (coord.)
  2. Gimenez, Philippe (coord.)
  3. Hernando Carrillo, Fernando (coord.)
  4. Monserrat Delpalillo, Francisco José (coord.)
  5. Moyano-Fernández, Julio José (coord.)

Éditorial: Servei de Comunicació i Publicacions ; Universitat Jaume I

ISBN: 978-84-19647-46-7

Année de publication: 2023

Pages: 55-58

Congreso: Encuentro de Álgebra Computacional y Aplicaciones (17. 2022. Castelló de la Plana)

Type: Communication dans un congrès

Résumé

Efficient methods to determine the relative position of two conics are of great interest for applications in robotics, computer animation, CAGD and other areas. We present a method to obtain the relative position of a parabola and an ellipse directly from the coefficients of their implicit equations, even if they are not given in canonical form, and avoiding the computation of the corresponding intersection points (and their characteristics) .