Perspectives and pitfalls in preserving subterranean biodiversity through protected areas

  1. Mammola, Stefano
  2. Altermatt, Florian
  3. Alther, Roman
  4. Amorim, Isabel R.
  5. Băncilă, Raluca I.
  6. Borges, Paulo A. V.
  7. Brad, Traian
  8. Brankovits, David
  9. Cardoso, Pedro
  10. Cerasoli, Francesco
  11. Chauveau, Claire A.
  12. Delić, Teo
  13. Di Lorenzo, Tiziana
  14. Faille, Arnaud
  15. Fišer, Cene
  16. Flot, Jean-François
  17. Gabriel, Rosalina
  18. Galassi, Diana M. P.
  19. Garzoli, Laura
  20. Griebler, Christian
  21. Konecny-Dupré, Lara
  22. Martínez, Alejandro
  23. Mori, Nataša
  24. Nanni, Veronica
  25. Ogorelec, Žiga
  26. Pallarés, Susana 1
  27. Salussolia, Alice
  28. Saccò, Mattia
  29. Stoch, Fabio
  30. Vaccarelli, Ilaria
  31. Zagmajster, Maja
  32. Zittra, Carina
  33. Meierhofer, Melissa B.
  34. Sánchez-Fernández, David 1
  35. Malard, Florian
  36. Mostrar todos los/as autores/as +
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
npj Biodiversity

ISSN: 2731-4243

Año de publicación: 2024

Volumen: 3

Número: 1

Tipo: Artículo

DOI: 10.1038/S44185-023-00035-1 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: npj Biodiversity

Resumen

Subterranean ecosystems (comprising terrestrial, semi-aquatic, and aquatic components) are increasingly threatened by human activities; however, the current network of surface-protected areas is inadequate to safeguard subterranean biodiversity. Establishing protected areas for subterranean ecosystems is challenging. First, there are technical obstacles in mapping three-dimensional ecosystems with uncertain boundaries. Second, the rarity and endemism of subterranean organisms, combined with a scarcity of taxonomists, delays the accumulation of essential biodiversity knowledge. Third, establishing agreements to preserve subterranean ecosystems requires collaboration among multiple actors with often competing interests. This perspective addresses the challenges of preserving subterranean biodiversity through protected areas. Even in the face of uncertainties, we suggest it is both timely and critical to assess general criteria for subterranean biodiversity protection and implement them based on precautionary principles. To this end, we examine the current status of European protected areas and discuss solutions to improve their coverage of subterranean ecosystems.

Información de financiación

Financiadores

Referencias bibliográficas

  • Gurney, G. G., Adams, V. M., Álvarez-Romero, J. G. & Claudet, J. Area-based conservation: taking stock and looking ahead. One Earth 6, 98–104 (2023).
  • Bhola, N. et al. Perspectives on area-based conservation and its meaning for future biodiversity policy. Conserv. Biol. 35, 168–178 (2021).
  • Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).
  • Watson, R. T. et al. Post-2020 aspirations for biodiversity. One Earth 4, 893–896 (2021).
  • Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).
  • Hermoso, V. et al. The EU Biodiversity Strategy for 2030: opportunities and challenges on the path towards biodiversity recovery. Environ. Sci. Policy 127, 263–271 (2022).
  • Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers. Conserv. 19, 3035–3048 (2010).
  • Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926 (2021).
  • Ficetola, G. F., Canedoli, C. & Stoch, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216 (2019).
  • Mammola, S. et al. Towards evidence-based conservation of subterranean ecosystems. Biol. Rev. 97, 1476–1510 (2022).
  • Howarth, F. G. Ecology of cave arthropods. Annu. Rev. Entomol. 28, 365–389 (1983).
  • Culver, D. C. & Pipan, T. Shallow subterranean habitats: ecology, evolution, and conservation. https://doi.org/10.4311/2014br0127. (Oxford University Press, USA, 2014).
  • Mammola, S. et al. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). Sci. Nat. 103, 88 (2016).
  • Fišer, C., Pipan, T. & Culver, D. C. The vertical extent of groundwater metazoans: an ecological and evolutionary perspective. Bioscience 64, 971–979 (2014).
  • Saccò, M. et al. Groundwater is a hidden global keystone ecosystem. Glob. Change Biol. 30, e17066 (2024).
  • Culver, D. C., Deharveng, L., Pipan, T. & Bedos, A. An overview of subterranean biodiversity hotspots. Diversity 13, 487 (2021).
  • Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355–367 (2015).
  • Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Chang. 11, 458–459 (2021).
  • Wynne, J. J. et al. A conservation roadmap for the subterranean biome. Conserv. Lett. 14, e12834 (2021).
  • Barth, J. A. C., Geist, J. & Cherry, J. Integrate strategies to save biodiversity and groundwater. Nature 614, 34 (2023).
  • Griebler, C. et al. Legal frameworks for the conservation and sustainable management of groundwater ecosystems. Groundw. Ecol. Evol. 551–571 (2023).
  • Colado, R. et al. A dark side of conservation biology: protected areas fail in representing subterranean biodiversity. Insect Conserv. Divers. 16, 674–683 (2023).
  • Huggins, X. et al. Overlooked risks and opportunities in groundwatersheds of the world’s protected areas. Nat. Sustain. 6, 855–864 (2023).
  • EEA (European Environmental Agency). The Natura 2000 protected areas network. https://www.eea.europa.eu/themes/biodiversity/natura-2000 (2023).
  • Fišer, C. et al. The European Green Deal misses Europe’s subterranean biodiversity hotspots. Nat. Ecol. Evol. 6, 1403–1404 (2022).
  • Piló, L. B., Calux, A., Scherer, R. & Bernard, E. Bats as ecosystem engineers in iron ore caves in the Carajás National Forest, Brazilian Amazonia. PLoS One 18, e0267870 (2023).
  • Hose, G. C. & Stumpp, C. Architects of the underworld: bioturbation by groundwater invertebrates influences aquifer hydraulic properties. Aquat. Sci. 81, 20 (2019).
  • Gers, C. Diversity of energy fluxes and interactions between arthropod communities: from soil to cave. Acta Oecol. 19, 205–213 (1998).
  • Prous, X., Ferreira, R. L. & Martins, R. P. Ecotone delimitation: epigean–hypogean transition in cave ecosystems. Austral. Ecol. 29, 374–382 (2004).
  • Manenti, R. & Piazza, B. Between darkness and light: spring habitats provide new perspectives for modern researchers on groundwater biology. PeerJ 9, e11711 (2021).
  • Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 3391 (2017).
  • Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41, 424–436 (2018).
  • Tanalgo, K. C., Oliveira, H. F. M. & Hughes, A. C. Mapping global conservation priorities and habitat vulnerabilities for cave-dwelling bats in a changing world. Sci. Total Environ. 843, 156909 (2022).
  • Iannella, M. et al. Getting the ‘Most Out of the Hotspot’ for practical conservation of groundwater biodiversity. Glob. Ecol. Conserv. 31, e01844 (2021).
  • Stoch, F., Artheau, M., Brancelj, A., Galassi, D. M. P. & Malard, F. Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshw. Biol. 54, 745–755 (2009).
  • Meierhofer, M. B. et al. Effective conservation of subterranean-roosting bats. Conserv. Biol. 00, e14157 (2023).
  • Faith, D. P. & Walker, P. A. Environmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity of sets of areas. Biodivers. Conserv. 5, 399–415 (1996).
  • Albuquerque, F. & Beier, P. Improving the use of environmental diversity as a surrogate for species representation. Ecol. Evol. 8, 852–858 (2018).
  • Mammola, S. & Leroy, B. Applying species distribution models to caves and other subterranean habitats. Ecography 41, 1194–1208 (2018).
  • Eme, D. et al. Multi-causality and spatial non-stationarity in the determinants of groundwater crustacean diversity in Europe. Ecography 38, 531–540 (2015).
  • Zagmajster, M. et al. Geographic variation in range size and beta diversity of groundwater crustaceans: Insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145 (2014).
  • Christman, M. C. et al. Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment. PLoS One 11, e0160408 (2016).
  • Jiménez-Valverde, A., Sendra, A., Garay, P. & Reboleira, A. S. P. S. Energy and speleogenesis: key determinants of terrestrial species richness in caves. Ecol. Evol. 7, 10207–10215 (2017).
  • Culver, D. C. et al. The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography (Cop.). 29, 120–128 (2006).
  • Pipan, T. & Culver, D. C. The unity and diversity of the subterranean realm with respect to invertebrate body size. J. Cave Karst Stud. 79, 1–9 (2017).
  • Marmonier, P. et al. Groundwater biodiversity and constraints to biological distribution. In: Groundwater Ecology and Evolution 113–140 (Elsevier, 2023).
  • Glanville, K., Schulz, C., Tomlinson, M. & Butler, D. Biodiversity and biogeography of groundwater invertebrates in Queensland, Australia. Subterr. Biol. 17, 55–76 (2016).
  • Vaccarelli, I. et al. Environmental factors shaping copepod distributions in cave waters of the Lessinian unsaturated karst (NE-Italy). Front. Ecol. Evol. 11, 1143874 (2023).
  • Vernham, G. et al. Understanding trait diversity: the role of geodiversity. Trends Ecol. Evol. 38, 736–748 (2023).
  • Michel, G. et al. Reserve selection for conserving groundwater biodiversity. Freshw. Biol. 54, 861–876 (2009).
  • Borges, P. A. V. et al. Volcanic caves: priorities for conserving the Azorean endemic troglobiont species. Int. J. Speleol. 41, 101–112 (2012).
  • Nitzu, E. et al. Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int. J. Speleol. 47, 43–52 (2018).
  • Cardoso, R. C., Ferreira, R. L. & Souza-Silva, M. Priorities for cave fauna conservation in the Iuiú karst landscape, northeastern Brazil: a threatened spot of troglobitic species diversity. Biodivers. Conserv. 30, 1433–1455 (2021).
  • Pressey, R. L., Johnson, I. R. & Wilson, P. D. Shades of irreplaceability: towards a measure of the contribution of sites to a reservation goal. Biodivers. Conserv. 3, 242–262 (1994).
  • Goldscheider, N. et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 28, 1661–1677 (2020).
  • Rivera, A. et al. Why do we need to care about transboundary aquifers and how do we solve their issues? Hydrogeol. J. 31, 27–30 (2023).
  • Liu, J., Yong, D. L., Choi, C. Y. & Gibson, L. Transboundary frontiers: an emerging priority for biodiversity conservation. Trends Ecol. Evol. 35, 679–690 (2020).
  • Cebrián-Piqueras, M. A. et al. Leverage points and levers of inclusive conservation in protected areas. Ecol. Soc. 28, 7 (2023).
  • Hu, S. et al. Applying a co-design approach with key stakeholders to design interventions to reduce illegal wildlife consumption. People Nat. 5, 1234–1244 (2023).
  • Yang, R. et al. Cost-effective priorities for the expansion of global terrestrial protected areas: setting post-2020 global and national targets. Sci. Adv. 6, eabc3436 (2023).
  • Holmes, G. Exploring the relationship between local support and the success of protected areas. Conserv. Soc. 11, 72–82 (2013).
  • Jones, N., Graziano, M. & Dimitrakopoulos, P. G. Social impacts of European Protected Areas and policy recommendations. Environ. Sci. Policy 112, 134–140 (2020).
  • Gavish-Regev, E. et al. The power of academic and public opinion in conservation: the case of Ayyalon Cave, Israel. Integr. Conserv. 2, 73–79 (2023).
  • Griebler, C. et al. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 75, 1391 (2016).
  • Epting, J., Michel, A., Affolter, A. & Huggenberger, P. Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers. J. Hydrol. X 11, 100071 (2021).
  • Schenk, A., Hunziker, M. & Kienast, F. Factors influencing the acceptance of nature conservation measures—a qualitative study in Switzerland. J. Environ. Manage. 83, 66–79 (2007).
  • Nanni, V. et al. Global response of conservationists across mass media likely constrained bat persecution due to COVID-19. Biol. Conserv. 272, 109591 (2022).
  • Martínez, A. & Mammola, S. Specialized terminology reduces the number of citations to scientific papers. Proc. R. Soc. B Biol. Sci. 288, 20202581 (2021).
  • Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).
  • Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
  • Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).
  • Wu, W.-Y. et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 3710 (2020).
  • Borzée, A. & Button, S. Integrative conservation science: conservation knowledge must be used to guide policies. Integr. Conserv. 2, 69–72 (2023).
  • Cook, C. N., Hockings, M. & Carter, R. W. Conservation in the dark? The information used to support management decisions. Front. Ecol. Environ. 8, 181–186 (2010).
  • Keith, D. A. et al. A function-based typology for Earth’s ecosystems. Nature 610, 513–518 (2022).
  • Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650 (2019).
  • Brosse, M., Benateau, S., Gaudard, A., Stamm, C. & Altermatt, F. The importance of indirect effects of climate change adaptations on alpine and pre-alpine freshwater systems. Ecol. Solut. Evid. 3, e12127 (2022).
  • Lind, L., Eckstein, R. L. & Relyea, R. A. Direct and indirect effects of climate change on distribution and community composition of macrophytes in lentic systems. Biol. Rev. 97, 1677–1690 (2022).
  • Nanni, V., Piano, E., Cardoso, P., Isaia, M. & Mammola, S. An expert-based global assessment of threats and conservation measures for subterranean ecosystems. Biol. Conserv. 283, 110136 (2023).
  • Whitten, T. Applying ecology for cave management in China and neighbouring countries. J. Appl. Ecol. 46, 520–523 (2009).
  • Shu, S.-S., Jiang, W.-S., Whitten, T., Yang, J.-X. & Chen, X.-Y. Drought and China’s cave species. Science 340, 272 (2013).
  • Becher, J., Englisch, C., Griebler, C. & Bayer, P. Groundwater fauna downtown—drivers, impacts and implications for subsurface ecosystems in urban areas. J. Contam. Hydrol. 248, 104021 (2022).
  • Boulton, A. J. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshw. Biol. 52, 632–650 (2007).
  • Newcomer, M. E. et al. Influence of hydrological perturbations and riverbed sediment characteristics on hyporheic zone respiration of CO2 and N2. J. Geophys. Res. Biogeosci. 123, 902–922 (2018).
  • Panno, S. V. et al. Microplastic contamination in karst groundwater systems. Groundwater 57, 189–196 (2019).
  • Balestra, V. & Bellopede, R. Microplastics in caves: A new threat in the most famous geo-heritage in the world. Analysis and comparison of Italian show caves deposits. J. Environ. Manage. 342, 118189 (2023).
  • Di Lorenzo, T. et al. Occurrence of volatile organic compounds in shallow alluvial aquifers of a Mediterranean region: Baseline scenario and ecological implications. Sci. Total Environ. 538, 712–723 (2015).
  • Manenti, R., Piazza, B., Zhao, Y., Padoa Schioppa, E. & Lunghi, E. Conservation studies on groundwaters’ pollution: challenges and perspectives for stygofauna communities. Sustainability 13, 7030 (2021).
  • Rathi, B. S., Kumar, P. S. & Vo, D.-V. N. Critical review on hazardous pollutants in water environment: occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 797, 149134 (2021).
  • Clements, R., Sodhi, N. S., Schilthuizen, M. & Ng, P. K. L. Limestone karsts of southeast asia: imperiled arks of biodiversity. Bioscience 56, 733–742 (2006).
  • Leopardi, S., Blake, D. & Puechmaille, S. J. White-nose syndrome fungus introduced from Europe to North America. Curr. Biol. 25, R217–R219 (2015).
  • Martínez, A. et al. Tossed ‘good luck’ coins as vectors for anthropogenic pollution into aquatic environment. Environ. Pollut. 259, 113800 (2020).
  • Piano, E. et al. A literature-based database of the natural heritage, the ecological status and tourism-related impacts in show caves worldwide. Nat. Conserv. 50, 159–174 (2022).
  • Nicolosi, G., Mammola, S., Verbrugge, L. & Isaia, M. Aliens in caves: the global dimension of biological invasions in subterranean ecosystems. Biol. Rev. 98, 849–867 (2023).
  • Mammola, S. et al. Climate change going deep: the effects of global climatic alterations on cave ecosystems. Anthr. Rev. 6, 98–116 (2019).
  • Vaccarelli, I. et al. A global meta-analysis reveals multilevel and context-dependent effects of climate change on subterranean ecosystems. One Earth 6, 1510–1522 (2023).
  • Gámez, S. & Harris, N. C. Conceptualizing the 3D niche and vertical space use. Trends Ecol. Evol. 37, 953–962 (2022).
  • LaRue, E. A. et al. A theoretical framework for the ecological role of three‐dimensional structural diversity. Front. Ecol. Environ. 21, 4–13 (2023).
  • Nakamura, A. et al. Forests and their canopies: achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451 (2017).
  • Ward, J. V. The four-dimensional nature of lotic ecosystems. J. North Am. Benthol. Soc. 8, 2–8 (1989).
  • Gurnell, A. M., Bertoldi, W., Tockner, K., Wharton, G. & Zolezzi, G. How large is a river? Conceptualizing river landscape signatures and envelopes in four dimensions. WIREs Water 3, 313–325 (2016).
  • Levin, N., Kark, S. & Danovaro, R. Adding the third dimension to marine conservation. Conserv. Lett. 11, e12408 (2018).
  • Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Chang. 12, 402–407 (2022).
  • Alavipanah, S., Haase, D., Lakes, T. & Qureshi, S. Integrating the third dimension into the concept of urban ecosystem services: a review. Ecol. Indic. 72, 374–398 (2017).
  • Zuluaga, S., Speziale, K. & Lambertucci, S. A. Global aerial habitat conservation post-COVID-19 anthropause. Trends Ecol. Evol. 36, 273–277 (2021).
  • Lambertucci, S. A. & Speziale, K. L. Need for global conservation assessments and frameworks to include airspace habitat. Conserv. Biol. 35, 1341–1343 (2021).
  • Marmonier, P., Dole-Olivier, M. J. & Creuze Des Chatelliers, M. Spatial distribution of interstitial assemblages in the floodplain of the rhǒne river. Regul. Rivers Res. Manag. 7, 75–82 (1992).
  • Linke, S., Turak, E., Asmyhr, M. G. & Hose, G. 3D conservation planning: Including aquifer protection in freshwater plans refines priorities without much additional effort. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1063–1072 (2019).
  • Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).
  • de Felipe, M., Aragonés, D. & Díaz-Paniagua, C. Thirty-four years of Landsat monitoring reveal long-term effects of groundwater abstractions on a World Heritage Site wetland. Sci. Total Environ. 880, 163329 (2023).
  • Gladstone, N. S. et al. Subterranean freshwater gastropod biodiversity and conservation in the United States and Mexico. Conserv. Biol. 36, e13722 (2021).
  • Reiss, J. et al. Groundwater flooding: ecosystem structure following an extreme recharge event. Sci. Total Environ. 652, 1252–1260 (2019).
  • Saccò, M. et al. Rainfall as a trigger of ecological cascade effects in an Australian groundwater ecosystem. Sci. Rep. 11, 3694 (2021).
  • Couton, M., Hürlemann, S., Studer, A., Alther, R. & Altermatt, F. Groundwater environmental DNA metabarcoding reveals hidden diversity and reflects land-use and geology. Mol. Ecol. 32, 3497–3512 (2023).
  • Canedoli, C. et al. Integrating landscape ecology and the assessment of ecosystem services in the study of karst areas. Landsc. Ecol. 37, 347–365 (2022).
  • Fabbri, S., Sauro, F., Santagata, T., Rossi, G. & De Waele, J. High-resolution 3-D mapping using terrestrial laser scanning as a tool for geomorphological and speleogenetical studies in caves: an example from the Lessini mountains (North Italy). Geomorphology 280, 16–29 (2017).
  • De Waele, J. et al. Geomorphological and speleogenetical observations using terrestrial laser scanning and 3D photogrammetry in a gypsum cave (Emilia Romagna, N. Italy). Geomorphology 319, 47–61 (2018).
  • Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).
  • Owens, H. L. & Rahbek, C. voluModel: modelling species distributions in three‐dimensional space. Methods Ecol. Evol. 14, 841–847 (2023).
  • Azmy, S. N. et al. Counting in the dark: non-intrusive laser scanning for population counting and identifying roosting bats. Sci. Rep. 2, 524 (2012).
  • D’Urban Jackson, T., Williams, G. J., Walker-Springett, G. & Davies, A. J. Three-dimensional digital mapping of ecosystems: a new era in spatial ecology. Proc. R. Soc. B Biol. Sci. 287, 20192383 (2020).
  • Saccò, M. et al. eDNA in subterranean ecosystems: applications, technical aspects, and future prospects. Sci. Total Environ. 820, 153223 (2022).