Frontiers of large language modelsempowering decision optimization, scene understanding, and summarization through advanced computational approaches

  1. DE CURTÒ I DÍAZ, JOAQUIM
Dirigida por:
  1. Carlos Miguel Tavares Calafate Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 21 de diciembre de 2023

Tribunal:
  1. Eva Onaindia de la Rivaherrera Presidente/a
  2. Raquel Martínez España Secretaria
  3. Joao Pedro Leal Abalada de Matos Carvalho Vocal

Tipo: Tesis

Resumen

The advent of Large Language Models (LLMs) marks a transformative phase in the field of Artificial Intelligence (AI), signifying the shift towards intelligent and autonomous systems capable of complex understanding and decision-making. This thesis delves deep into the multifaceted capabilities of LLMs, exploring their potential applications in decision optimization, scene understanding, and advanced summarization tasks in diverse contexts. In the first segment of the thesis, the focus is on Unmanned Aerial Vehicles' (UAVs) semantic scene understanding. The capability of instantaneously providing high-level data and visual cues positions UAVs as ideal platforms for performing complex tasks. The work combines the potential of LLMs, Visual Language Models (VLMs), and state-of-the-art detection pipelines to offer nuanced and contextually accurate scene descriptions. A well-controlled, efficient practical implementation of microdrones in challenging settings is presented, supplementing the study with proposed standardized readability metrics to gauge the quality of LLM-enhanced descriptions. This could significantly impact sectors such as film, advertising, and theme parks, enhancing user experiences manifold. The second segment brings to light the increasingly crucial problem of decision-making under uncertainty. Using the Multi-Armed Bandit (MAB) problem as a foundation, the study explores the use of LLMs to inform and guide strategies in dynamic environments. It is postulated that the predictive power of LLMs can aid in choosing the correct balance between exploration and exploitation based on the current state of the system. Through rigorous testing, the proposed LLM-informed strategy showcases its adaptability and its competitive performance against conventional strategies. Next, the research transitions into studying the goodness-of-fit assessments of Generative Adversarial Networks (GANs) utilizing the Signature Transform. By providing an efficient measure of similarity between image distributions, the study sheds light on the intrinsic structure of the samples generated by GANs. A comprehensive analysis using statistical measures, such as the test Kruskal-Wallis, provides a more extensive understanding of the GAN convergence and goodness of fit. In the final section, the thesis introduces a novel benchmark for automatic video summarization, emphasizing the harmonious integration of LLMs and Signature Transform. An innovative approach grounded in the harmonic components captured by the Signature Transform is put forth. The measures are extensively evaluated, proving to offer compelling accuracy that correlates well with the concept of a good summary. This research work establishes LLMs as powerful tools in addressing complex tasks across diverse domains, redefining decision optimization, scene understanding, and summarization tasks. It not only breaks new ground in the applications of LLMs but also sets the direction for future work in this exciting and rapidly evolving field.