Spacelike Hypersurfaces in Conformally Stationary Spacetimes

  1. Alías, Luis J.
  2. Caminha, Antonio
  3. Nascimento, F. Yure S. do
Libro:
Recent Advances in Pure and Applied Mathematics

ISSN: 2509-8888 2509-8896

ISBN: 9783030413200 9783030413217

Año de publicación: 2020

Páginas: 161-174

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-41321-7_13 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Alías, L.J., Colares, A.G.: Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes. Math. Proc. Cambridge Philos. Soc. 143(3), 703–729 (2007)
  • Alías, L.J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. Gen. Relativ. Gravit. 27(1), 71–84 (1995)
  • Alías, L.J., Romero, A., Sánchez, M.: Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems. Tohoku Math. J. 49(3), 337–345 (1997)
  • Alías, L.J., Romero, A., Sánchez, M.: Spacelike hypersurfaces of constant mean curvature in certain spacetimes. Nonlinear Anal. 30(1), 655–661 (1997)
  • Alías, L.J., Brasil, A., Jr., Colares, A.G.: Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications. Proc. Edinburgh Math. Soc. 46, 465–488 (2003)
  • Alías, L.J., Impera, D., Rigoli, M.: Spacelike hypersurfaces of constant higher order mean curvature in generalized Robertson-Walker spacetimes. Math. Proc. Cambridge Philos. Soc. 152(2), 365–383 (2012). Erratum, Math. Proc. Cambridge Philos. Soc. 155(2), 375–377 (2013)
  • Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, Cham (2016)
  • Alías, L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle at infinity with applications to geometric vector fields. J. Math. Anal. Appl. 474, 242–247 (2019)
  • Caminha, A.: On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds. J. Geom. Phys. 56, 1144–1174 (2005)
  • Caminha, A.: A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds. Diff. Geom. Appl. 24, 652–659 (2006)
  • Caminha, A.: The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. New Ser. 42(2), 277–300 (2011)
  • Cheng, S.Y., Yau, S.T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. 104(3), 407–419 (1976)
  • Dajczer, M., et al.: Submanifolds and Isometric Immersions. Publish or Perish, Houston (1990)
  • Montiel, S.: Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes. Math. Ann. 314, 529–553 (1999)