Turbulent Heating in the Accelerating Region Using a Multishell Model

  1. Verdini, A.
  2. Grappin, Roland
  3. Montagud-Camps, Victor 1
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Solar Physics

ISSN: 0038-0938 1573-093X

Año de publicación: 2019

Volumen: 294

Número: 5

Tipo: Artículo

DOI: 10.1007/S11207-019-1458-Y GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Solar Physics

Resumen

Recent studies of turbulence-driven solar winds indicate that fast winds are obtained only at the price of unrealistic bottom boundary conditions: too large wave amplitudes and small frequencies. In this work, the incompressible turbulent dissipation is modeled with a large-scale von Karman–Howarth–Kolmogorov-like phenomenological expression (). An evaluation of the phenomenology is thus necessary to understand if unrealistic boundary conditions result from physical or model limitations. To assess the validity of the Kolmogorov-like expression, , one needs to compare it to exact heating, which requires describing the cascade in detail. This has been done in the case of homogeneous MHD turbulence, including expansion, but not in the critical accelerating region. To assess the standard incompressible turbulent heating in the accelerating region, we use a reduced MHD model (multishell model) in which the perpendicular turbulent cascade is described by a shell model, allowing to reach a Reynolds number of . We first consider the homogeneous and expanding cases, and find that primitive MHD and multishell equations give remarkably similar results. We thus feel free to use the multishell model in the accelerating region. The results indicate that the large-scale phenomenology is inaccurate and it overestimates the heating by a factor at least 20, thus invalidating earlier studies of winds driven by incompressible turbulence. We conclude that realistic 1D wind models cannot be based solely on incompressible turbulence, but probably need an addition of compressible turbulence and shocks to increase the wave reflection and thus the heating

Referencias bibliográficas

  • Beresnyak, A.: 2012, Basic properties of magnetohydrodynamic turbulence in the inertial range. Mon. Not. Roy. Astron. Soc. 422, 3495. DOI . ADS .
  • Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 10, 2. DOI .
  • Buchlin, E., Velli, M.: 2007, Shell models of RMHD turbulence and the heating of solar coronal loops. Astrophys. J. 662, 701. DOI . ADS .
  • Chandran, B.D.G., Dennis, T.J., Quataert, E., Bale, S.D.: 2011, Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197. DOI . ADS .
  • Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520. DOI . ADS .
  • Del Zanna, L., Matteini, L., Landi, S., Verdini, A., Velli, M.: 2015, Parametric decay of parallel and oblique Alfvén waves in the expanding solar wind. J. Plasma Phys. 81(1), 325810102. DOI . ADS .
  • Dmitruk, P., Milano, L.J., Matthaeus, W.H.: 2001, Wave-driven turbulent coronal heating in open field line regions: Nonlinear phenomenological model. Astrophys. J. 548, 482. DOI . ADS .
  • Dmitruk, P., Matthaeus, W.H., Milano, L.J., Oughton, S., Zank, G.P., Mullan, D.J.: 2002, Coronal heating distribution due to low-frequency, wave-driven turbulence. Astrophys. J. 575, 571. DOI . ADS .
  • Dong, Y., Verdini, A., Grappin, R.: 2014, Evolution of turbulence in the expanding solar wind, a numerical study. Astrophys. J. 793(2), 118. DOI . ADS .
  • Giuliani, P., Carbone, V.: 1998, A note on shell models for MHD turbulence. Europhys. Lett. 43, 527. DOI . ADS .
  • Gledzer, E.B.: 1973, System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl. 18, 216. ADS .
  • Grappin, R., Velli, M., Mangeney, A.: 1993, Nonlinear wave evolution in the expanding solar wind. Phys. Rev. Lett. 70(1), 2190.
  • Hossain, M., Gray, P.C., Pontius, D.H.J., Matthaeus, W.H., Oughton, S.: 1995, Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence. Phys. Fluids 7(1), 2886. DOI .
  • Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z., Verdini, A.: 2014, Validating a time-dependent turbulence-driven model of the solar wind. Astrophys. J. 784(2), 120. DOI . ADS .
  • Matsumoto, T., Suzuki, T.K.: 2012, Connecting the Sun and the solar wind: The first 2.5-dimensional self-consistent MHD simulation under the Alfvén wave scenario. Astrophys. J. 749, 8. DOI . ADS .
  • Matthaeus, W.H., Minnie, J., Breech, B., Parhi, S., Bieber, J., Oughton, S.: 2004, Transport of cross helicity and radial evolution of Alfvénicity in the solar wind. Geophys. Res. Lett. 31(1), L12803. DOI .
  • Montagud-Camps, V., Grappin, R., Verdini, A.: 2018, Turbulent heating between 0.2 and 1 AU: A numerical study. Astrophys. J. 853(2), 153. DOI . ADS .
  • Nigro, G., Malara, F., Carbone, V., Veltri, P.: 2004, Nanoflares and MHD turbulence in coronal loops: A hybrid shell model. Phys. Rev. Lett. 92(19), 194501. DOI . ADS .
  • Perez, J.C., Chandran, B.D.G.: 2013, Direct numerical simulations of reflection-driven, reduced magnetohydrodynamic turbulence from the Sun to the Alfvén critical point. Astrophys. J. 776(2), 124. DOI .
  • Politano, H., Pouquet, A.G.: 1998, Von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E, Stat. Phys. 57(1), 21. DOI .
  • Shoda, M., Yokoyama, T.: 2016, Nonlinear reflection process of linearly polarized, broadband Alfvén waves in the fast solar wind. Astrophys. J. 820, 123. DOI . ADS .
  • Shoda, M., Yokoyama, T., Suzuki, T.K.: 2018a, A self-consistent model of the coronal heating and solar wind acceleration including compressible and incompressible heating processes. Astrophys. J. 853(2), 190. DOI .
  • Shoda, M., Yokoyama, T., Suzuki, T.K.: 2018b, Frequency-dependent Alfvén-wave propagation in the solar wind: Onset and suppression of parametric decay instability. Astrophys. J. 860, 17. DOI . ADS .
  • Suzuki, T.K., Inutsuka, S.-i.: 2005, Making the corona and the fast solar wind: A self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. 632(1), L49. DOI .
  • Suzuki, T.K., Inutsuka, S.-I.: 2006, Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. J. Geophys. Res. Space Phys. 111, A06101. DOI . ADS .
  • Tenerani, A., Velli, M.: 2017, Evolving waves and turbulence in the outer corona and inner heliosphere: The accelerating expanding box. Astrophys. J. 843, 26. DOI . ADS .
  • Usmanov, A.V., Goldstein, M.L., Matthaeus, W.H.: 2014, Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity. Astrophys. J. 788, 43. DOI . ADS .
  • van Ballegooijen, A.A., Asgari-Targhi, M.: 2016, Heating and acceleration of the fast solar wind by Alfvén wave turbulence. Astrophys. J. 821, 106. DOI . ADS .
  • van Ballegooijen, A.A., Asgari-Targhi, M.: 2017, Direct and inverse cascades in the acceleration region of the fast solar wind. Astrophys. J. 835, 10. DOI . ADS .
  • van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, W.B. IV, Tóth, G., Gombosi, T.I.: 2014, Alfvén Wave Solar Model (AWSoM): Coronal heating. Astrophys. J. 782, 81. DOI . ADS .
  • Vasquez, B.J., Smith, C.W., Hamilton, K., MacBride, B.T., Leamon, R.J.: 2007, Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J. Geophys. Res. 112(A7), A07101. DOI .
  • Verdini, A., Grappin, R.: 2012, Transition from weak to strong cascade in MHD turbulence. Phys. Rev. Lett. 109(2), 025004. DOI . ADS .
  • Verdini, A., Grappin, R., Velli, M.: 2012, Coronal heating in coupled photosphere-chromosphere-coronal systems: Turbulence and leakage. Astron. Astrophys. 538, A70. DOI . ADS .
  • Verdini, A., Velli, M.: 2007, Alfvén waves and turbulence in the solar atmosphere and solar wind. Astrophys. J. 662, 669. DOI . ADS .
  • Verdini, A., Velli, M., Buchlin, É.: 2009, Turbulence in the sub-Alfvénic solar wind driven by reflection of low-frequency Alfvén waves. Astrophys. J. Lett. 700(1), L39. DOI . ADS .
  • Verdini, A., Velli, M., Matthaeus, W.H., Oughton, S., Dmitruk, P.: 2010, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, L116. DOI . ADS .
  • Verdini, A., Grappin, R., Pinto, R.F., Velli, M.: 2012, On the origin of the $1/f$ spectrum in the solar wind magnetic field. Astrophys. J. Lett. 750(2), L33. DOI . ADS .
  • Verdini, A., Grappin, R., Hellinger, P., Landi, S., Müller, W.-C.: 2015, Anisotropy of third-order structure functions in MHD turbulence. Astrophys. J. 804(2), 119. DOI . ADS .
  • Wang, Y.-M.: 1994, Polar plumes and the solar wind. Astrophys. J. 435, L153. DOI .
  • Wang, Y.-M., Grappin, R., Robbrecht, E., Sheeley, N.R. Jr.: 2012, On the nature of the solar wind from coronal pseudostreamers. Astrophys. J. 749, 182. DOI . ADS .
  • Woolsey, L.N., Cranmer, S.R.: 2015, Time-dependent turbulent heating of open flux tubes in the chromosphere, corona, and solar wind. Astrophys. J. 811, 136. DOI . ADS .
  • Yamada, M., Ohkitani, K.: 1987, Lyapunov spectrum of a chaotic model of three-dimensional turbulence. J. Phys. Soc. Japan 56, 4210. DOI . ADS .