Turbulent Heating between 0.2 and 1 au: A Numerical Study

  1. Montagud-Camps, Victor
  2. Grappin, R.
  3. Verdini, A.
Revista:
The Astrophysical Journal

ISSN: 0004-637X 1538-4357

Año de publicación: 2018

Volumen: 853

Número: 2

Páginas: 153

Tipo: Artículo

DOI: 10.3847/1538-4357/AAA1EA GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: The Astrophysical Journal

Resumen

The heating of the solar wind is key to understanding its dynamics and acceleration process. The observed radial decrease of the proton temperature in the solar wind is slow compared to the adiabatic prediction, and it is thought to be caused by turbulent dissipation. To generate the observed 1/R decrease, the dissipation rate has to reach a specific level that varies in turn with temperature, wind speed, and heliocentric distance. We want to prove that MHD turbulent simulations can lead to the 1/R profile. We consider here the slow solar wind, characterized by a quasi-2D spectral anisotropy. We use the expanding box model equations, which incorporate into 3D MHD equations the expansion due to the mean radial wind, allowing us to follow the plasma evolution between 0.2 and 1 au. We vary the initial parameters: Mach number, expansion parameter, plasma β, and properties of the energy spectrum as the spectral range and slope. Assuming turbulence starts at 0.2 au with a Mach number equal to unity, with a 3D spectrum mainly perpendicular to the mean field, we find radial temperature profiles close to 1/R on average. This is done at the price of limiting the initial spectral extent, corresponding to the small number of modesin the inertial range available, due to the modest Reynolds number reachable with high Mach numbers

Referencias bibliográficas

  • Breech, (2009), JGRA, 114, 10.1029/2009JA014354
  • Carbone, (2009), PhRvL, 103, pp. 61102, 10.1103/PhysRevLett.103.061102
  • Coburn, (2012), ApJ, 754, pp. 93, 10.1088/0004-637X/754/2/93
  • Dasso, (2005), ApJL, 635, pp. L181, 10.1086/499559
  • Dong, (2014), ApJ, 793, pp. 118, 10.1088/0004-637X/793/2/118
  • Grappin, (1996), JGR, 101, pp. 425, 10.1029/95JA02147
  • Grappin, (1991), AnGeo, 9, pp. 416
  • Grappin, (1993), PhRvL, 70, pp. 2190, 10.1103/PhysRevLett.70.2190
  • Hellinger, (2013), JGRA, 118, pp. 1351, 10.1002/jgra.50107
  • Marino, (2008), ApJL, 677, pp. L71, 10.1086/587957
  • Matthaeus, (2011), SSRv, 160, pp. 145, 10.1007/s11214-011-9793-9
  • Politano, (1998), PhRvE, 57, pp. 21, 10.1103/PhysRevE.57.R21
  • Scudder, (2015), ApJ, 809, pp. 126, 10.1088/0004-637X/809/2/126
  • Smith, (2001), JGR, 106, pp. 8253, 10.1029/2000JA000366
  • Stawarz, (2009), ApJ, 697, pp. 1119, 10.1088/0004-637X/697/2/1119
  • Totten, (1995), JGR, 100, pp. 13, 10.1029/94JA02420
  • Tu, (1988), JGR, 93, pp. 7, 10.1029/JA093iA01p00007
  • Tu, (1997), SoPh, 171, pp. 363, 10.1023/A:1004968327196
  • Vasquez, (2007), JGR, 112, 10.1029/2007JA012305
  • Verdini, (2016), ApJ, 831, pp. 179, 10.3847/0004-637X/831/2/179
  • Verdini, (2015), ApJ, 804, pp. 119, 10.1088/0004-637X/804/2/119