Oceanic currents maintain the genetic structure of non-marine coastal taxa in the western Mediterranean Sea

  1. Villastrigo, Adrián
  2. Orenes-Salazar, Víctor
  3. García-Meseguer, Antonio José
  4. Mirón-Gatón, Juana María
  5. Mourre, Baptiste
  6. Millán, Andrés
  7. Velasco, Josefa
Revista:
npj Biodiversity

ISSN: 2731-4243

Año de publicación: 2023

Volumen: 2

Número: 1

Tipo: Artículo

DOI: 10.1038/S44185-023-00028-0 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: npj Biodiversity

Referencias bibliográficas

  • Parvizi, E., Fraser, C. I. & Waters, J. M. Genetic impacts of physical disturbance processes in coastal marine ecosystems. J. Biogeogr. 49, 1877–1890 (2022).
  • Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).
  • Thorner, J., Kumar, L. & Smith, S. D. A. Impacts of climate-change-driven sea level rise on intertidal rocky reef habitats will be variable and site specific. PLoS ONE 9, e86130 (2014).
  • Greenan, T. M., Griffiths, C. L. & Santamaria, C. A. Molecular approaches uncover cryptic diversity in intertidal Ligia isopods (Crustacea, Isopoda, Ligiidae) across the southern Africa coastline. PeerJ 6, e4658 (2018).
  • Pfingstl, T., Lienhard, A., Baumann, J. & Koblmüller, S. A taxonomist’s nightmare - Cryptic diversity in Caribbean intertidal arthropods (Arachnida, Acari, Oribatida). Mol. Phylogenet. Evol. 163, 107240 (2021).
  • Sabatelli, S., Ruspantini, P., Cardoli, P. & Audisio, P. Underestimated diversity: Cryptic species and phylogenetic relationships in the subgenus Cobalius (Coleoptera: Hydraenidae) from marine rockpools. Mol. Phylogenet. Evol. 163, 107243 (2021).
  • Villastrigo, A. et al. Cryptic lineages, cryptic barriers: historical seascapes and oceanic fronts drive genetic diversity in supralittoral rockpool beetles (Coleoptera: Hydraenidae). Zool. J. Linn. Soc. 196, 740–756 (2022).
  • Margalef, R. Sobre la ecología de las larvas del mosquito Aëdes mariae. Publ. Inst. Biol. Apl. 6, 83–101 (1949).
  • Schunter, C. et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).
  • Pascual, M., Rives, B., Schunter, C. & MaCpherson, E. Impact of life history traits on gene flow: a multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, 1–20 (2017).
  • Millot, C. Circulation in the Mediterranean Sea: evidences, debates and unanswered questions. scimar 69, 5–21 (2005).
  • Galarza, J. A. et al. The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc. Natl. Acad. Sci. USA. 106, 1473–1478 (2009).
  • Cowen, R. K., Lwiza, K. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).
  • Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).
  • Sabatelli, S. et al. Molecular ecology and phylogenetics of the water beetle genus Ochthebius revealed multiple independent shifts to marine rockpools lifestyle. Zool. Scr. 45, 175–186 (2016).
  • Villastrigo, A., Hernando, C. & Millán, A. The Ochthebius (Coleoptera, Hydraenidae) from western Palaearctic supratidal rockpools. Supl. del Bol. Asoc. Esp. Entomol. 4, 100–108 (2022).
  • Urbanelli, S. Genetic divergence and reproductive isolation in the Ochthebius (Calobius) complex (Coleoptera: Hydraenidae). Heredity 88, 333–341 (2002).
  • Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
  • Bilton, D. T. Differentiation of South African coastal rock pool Ochthebius is associated with major ocean currents (Coleoptera: Hydraenidae). Acta Entomol. Mus. Natl. Pragae 61, 253–260 (2021).
  • Velasco, J., Mirón-Gatón, J. M., García-Meseguer, A. J. & Botella-Cruz, M. Life cycle differences between two coexisting species of supratidal rockpools: Ochthebius quadricollis Mulsant, 1844 and Ochthebius lejolisii Mulsant and Rey, 1861 (coleoptera, Hydraenidae). Supl. Bol. Asoc. Esp. Entomol. 4, 131–136 (2022).
  • Mirón-Gatón, J. M., Botella-Cruz, M., García-Meseguer, J. A., Millán, A. & Velasco, J. Discordant pattern between realised and fundamental saline niches in two supralittoral Ochthebius species (Coleoptera: Hydraenidae). Ecol. Entomol. 48, 284–294 (2023)
  • McGaughran, A., Stevens, M. I. & Holland, B. R. Biogeography of circum-Antarctic springtails. Mol. Phylogenet. Evol. 57, 48–58 (2010).
  • Pfingstl, T. Resistance to fresh and salt water in intertidal mites (Acari: Oribatida): implications for ecology and hydrochorous dispersal. Exp. Appl. Acarol. 61, 87–96 (2013).
  • Sánchez-Garrido, J. C. & Nadal, I. The Alboran Sea circulation and its biological response: a review. Front. Mar. Sci. 9, 933390 (2022).
  • von der Heyden, S. Why do we need to integrate population genetics into South African marine protected area planning? Afr. J. Mar. Sci. 31, 263–269 (2009).
  • Lett, C., Barrier, N. & Bahlali, M. Converging approaches for modeling the dispersal of propagules in air and sea. Ecol. Modell. 415, 108858 (2020).
  • Monzón-Argüello, C. et al. Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. J. Biogeogr. 37, 1752–1766 (2010).
  • Freire, A. S. et al. Does the transport of larvae throughout the south Atlantic support the genetic and morphometric diversity of the Sally Lightfoot Crabs Grapsus grapsus (Linnaeus, 1758) and Grapsus adscensionis (Osbeck, 1765) (Decapoda: Grapsidae) among the oceanic islands? J. Mar. Syst. 223, 103614 (2021).
  • Andrello, M. et al. Low connectivity between Mediterranean marine protected areas: a biophysical modeling approach for the dusky grouper Epinephelus marginatus. PLoS ONE 8, e68564 (2013).
  • Calò, A. et al. A review of methods to assess connectivity and dispersal between fish populations in the Mediterranean Sea. Adv. Oceanogr. Limnol. 4, 150–175 (2013).
  • Legrand, T., Di Franco, A., Ser-Giacomi, E., Caló, A. & Rossi, V. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish. Mar. Environ. Res. 151, 104761 (2019).
  • Bode, M. et al. Successful validation of a larval dispersal model using genetic parentage data. PLoS Biol. 17, e3000380 (2019).
  • Jahnke, M. & Jonsson, P. R. Biophysical models of dispersal contribute to seascape genetic analyses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210024 (2022).
  • Nakahama, N. et al. Possible dispersal of the coastal and subterranean carabid beetle Thalassoduvalius masidai (Coleoptera) by ocean currents. Biol. J. Linn. Soc. 135, 265–276 (2022).
  • Ruxton, G. D. & Humphries, S. Can ecological and evolutionary arguments solve the riddle of the missing marine insects? Mar. Ecol. 29, 72–75 (2008).
  • Highsmith, R. C. Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar. Ecol. Prog. Ser. 25, 169–179 (1985).
  • Reid, D. G. Systematics and Evolution of Littorina. vol. 164 463 (The Ray Society, 1996).
  • Houle, A. Floating islands: a mode of long-distance dispersal for small and medium- sized terrestrial vertebrates. Divers. Distrib. 4, 201–216 (1998).
  • de Queiroz, A. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20, 68–73 (2005).
  • Yeh, H.-Y. et al. Rafting on floating fruit is effective for oceanic dispersal of flightless weevils. J. Exp. Biol. 221, jeb190488 (2018).
  • Lindo, Z. Transoceanic dispersal of terrestrial species by debris rafting. Ecography 43, 1364–1372 (2020).
  • Teske, P. R. et al. Mitochondrial DNA is unsuitable to test for isolation by distance. Sci. Rep. 8, 8448 (2018).
  • Mirón-Gatón, J. M., Botella-Cruz, M., García-Meseguer, A. J., Millán, A. & Velasco, J. Thermal tolerance differs between co-occurring congeneric beetle species in marine supratidal rockpools. Mar. Ecol. Prog. Ser. 681, 185–196 (2022).
  • Abellán, P. et al. Conservation genetics in hypersaline inland waters: Mitochondrial diversity and phylogeography of an endangered Iberian beetle (Coleoptera: Hydraenidae). Conserv. Genet. 8, 79–88 (2007).
  • Incagnone, G., Marrone, F., Barone, R., Robba, L. & Naselli-Flores, L. How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750, 103–123 (2015).
  • Powlik, J. J. Habitat characters of Tigriopus californicus (Copepoda: Harpacticoida), with notes on the dispersal of supralittoral fauna. J. Mar. Biol. Assoc. UK 79, 85–92 (1999).
  • Swanson, G. A. Dissemination of Amphipods by Waterfowl. J. Wildl. Manage. 48, 988–991 (1984).
  • García-Merchán, V. H. et al. Phylogeographic patterns of decapod crustaceans at the Atlantic–Mediterranean transition. Mol. Phylogenet. Evol. 62, 664–672 (2012).
  • Booth-Rea, G., R. Ranero, C. & Grevemeyer, I. The Alboran volcanic-arc modulated the Messinian faunal exchange and salinity crisis. Sci. Rep. 8, 1–14 (2018).
  • Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20, 423–442 (1999).
  • Kyle, C. J. & Boulding, E. G. Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar. Biol. 137, 835–845 (2000).
  • Villastrigo, A., Hernando, C., Millán, A. & Ribera, I. The neglected diversity of the Ochthebius fauna from Eastern Atlantic and Central and Western Mediterranean coastal rockpools (Coleoptera, Hydraenidae). Org. Divers. Evol. 20, 785–801 (2020).
  • García-Meseguer, A. J. et al. Fine-scale niche differences allow the co-existence of congeneric aquatic beetles in supratidal rockpools. Hydrobiologia. https://doi.org/10.1007/s10750-023-05333-0 (2023).
  • Patarnello, T., Volckaert, F. A. M. J. & Castilho, R. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol. Ecol. 16, 4426–4444 (2007).
  • Torrado, H. et al. Impact of individual early life traits in larval dispersal: A multispecies approach using backtracking models. Prog. Oceanogr. 192, 102518 (2021).
  • Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).
  • Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol 34, 3299–3302 (2017).
  • Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).
  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Preprint at https://www.R-project.org/ (2022).
  • Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Softw. 23, 1210–1214 (2008).
  • Juza, M. et al. SOCIB operational ocean forecasting system and multi-platform validation in the Western Mediterranean Sea. J. Operational Oceanogr. 9, s155–s166 (2016).
  • Mourre, B. et al. Assessment of high-resolution regional ocean prediction systems using multi-platform observations: Illustrations in the western Mediterranean Sea. in New Frotiers in Operation Oceanography (eds. Chassignet, E. P., Pascual, A., Tintoré, J. & Verron, J.) 663–694 (2018).
  • Tintoré, J. et al. SOCIB: the balearic islands coastal ocean observing and forecasting system responding to science, technology and society needs. Mar. Technol. Soc. J. 47, 101–117 (2013).
  • Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404 (2005).
  • Simoncelli, S. et al. Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). Preprint at https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004 (2019).
  • Aguiar, E. et al. Multi-platform model assessment in the Western Mediterranean Sea: impact of downscaling on the surface circulation and mesoscale activity. Ocean Dyn. 70, 273–288 (2020).
  • Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
  • Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).