Use of the Box–Behnken Experimental Design for the Optimization of Orange II (Acid Orange 7) Adsorption on Aloe vera

  1. Aguilar, María Isabel 1
  2. Lloréns, Mercedes 1
  3. Ortuño, Juan Francisco 1
  4. Meseguer, Víctor Francisco 1
  5. Pérez-Marín, Ana Belén 1
  6. Cases, Alejandro 1
  1. 1 Departamento de Ingeniería Química, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
Revista:
Sustainability

ISSN: 2071-1050

Año de publicación: 2023

Volumen: 15

Número: 22

Páginas: 15727

Tipo: Artículo

DOI: 10.3390/SU152215727 WoS: WOS:001123440800001 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Sustainability

Resumen

Industrial wastewater effluents containing dyes are considered to pollute and be harmfulto the environment. Among the various removal techniques, the adsorption process using low-costadsorbents has been successfully used to remove pollutants. In this work, Aloe vera leaves (AVs)have been used as adsorbent for the removal of Orange II (O-II). A three-level three-factor Box–Behnken factorial design, including three replicates of center points, was applied to investigate themain parameters affecting the biosorption of O-II dye in aqueous solutions by AVs. The selectedparameters were adsorbent dose, initial dye concentration, and contact time. The Box–Behnkenexperiment design has given a satisfactory result for the optimization of the adsorption process. Theobtained value of R2(0.9993) shows that the quadratic response model adequately represents therelationship between each response and the chosen variables. The pH influences the adsorptioncapacity, obtaining at pH 2 the maximum adsorption capacity value. From the kinetic modelsstudied, the one that best describes the adsorption of Orange II on Aloe vera is the Bangham model(ARE = 1.06%). The isotherm model that best represents the experimental data is the Toth model. Themaximum adsorption capacity obtained by this model was 15.9 mg·g−1.

Referencias bibliográficas

  • Bazin, (2012), Ecotoxicol. Environ. Saf., 85, pp. 131, 10.1016/j.ecoenv.2012.08.003
  • Birhanli, (2005), Drug Chem. Toxicol., 28, pp. 51
  • Oliveira, (2007), Mutat. Res. Genet. Toxicol. Environ. Mutagen., 626, pp. 135, 10.1016/j.mrgentox.2006.09.008
  • Teodosiu, (2007), Environ. Eng. Manag. J., 6, pp. 175, 10.30638/eemj.2007.022
  • Karcher, (2002), Water Res., 36, pp. 4717, 10.1016/S0043-1354(02)00195-1
  • Vieira, (2009), J. Hazard. Mater., 166, pp. 1272, 10.1016/j.jhazmat.2008.12.043
  • Ogugbue, C.J., and Sawidis, T. (2011). Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas Hydrophila Isolated from Industrial Effluent. Biotechnol. Res. Int., 2011.
  • Petcu, (2016), Sep. Purif. Technol., 158, pp. 155, 10.1016/j.seppur.2015.12.002
  • Wang, (2020), Sep. Purif. Technol., 230, pp. 115851, 10.1016/j.seppur.2019.115851
  • Liu, (2019), Chemosphere, 237, pp. 124470, 10.1016/j.chemosphere.2019.124470
  • Huang, (2019), Chem. Eng. J., 369, pp. 784, 10.1016/j.cej.2019.03.136
  • Visa, (2009), Catal. Today, 144, pp. 137, 10.1016/j.cattod.2008.12.032
  • Rondina, (2019), Appl. Water Sci., 9, pp. 181, 10.1007/s13201-019-1063-0
  • Zhao, (2017), Water Sci. Technol., 75, pp. 1633, 10.2166/wst.2017.034
  • Chaukura, (2017), Appl. Water Sci., 7, pp. 2175, 10.1007/s13201-016-0392-5
  • Krika, (2015), Desalination Water Treat., 53, pp. 3711, 10.1080/19443994.2014.995136
  • Rafatullah, (2010), J. Hazard. Mater., 177, pp. 70, 10.1016/j.jhazmat.2009.12.047
  • (2013), Ind. Crops Prod., 48, pp. 89, 10.1016/j.indcrop.2013.04.009
  • Arshadi, (2014), RSC Adv., 4, pp. 16005, 10.1039/C3RA47756H
  • Oloo, (2020), Environ. Chem. Ecotoxicol., 2, pp. 64, 10.1016/j.enceco.2020.05.001
  • Crini, (2008), Prog. Polym. Sci., 33, pp. 399, 10.1016/j.progpolymsci.2007.11.001
  • Haitham, (2019), Arab. J. Chem., 12, pp. 1595, 10.1016/j.arabjc.2014.10.010
  • Razmovski, (2014), J. Taiwan Inst. Chem. Eng., 45, pp. 1700, 10.1016/j.jtice.2013.12.020
  • Salih, (2022), Heliyon, 8, pp. e10092, 10.1016/j.heliyon.2022.e10092
  • Yagub, (2014), Adv. Colloid Interface Sci., 209, pp. 172, 10.1016/j.cis.2014.04.002
  • Haque, A.N.M.A., Sultana, N., Sayem, A.S.M., and Smriti, S.A. (2022). Sustainable Adsorbents from Plant-Derived Agricultural Wastes for Anionic Dye Removal: A Review. Sustainability, 14.
  • Bhomick, (2023), Water Conserv. Sci. Eng., 8, pp. 48, 10.1007/s41101-023-00220-0
  • Li, (2014), Front. Environ. Sci. Eng., 8, pp. 496, 10.1007/s11783-013-0578-0
  • Bazrafshan, (2014), Indian J. Chem. Technol., 21, pp. 105
  • Ahmaruzzaman, (2012), Sep. Sci. Technol., 47, pp. 2381
  • Fadhil, (2019), J. Eng., 25, pp. 55, 10.31026/j.eng.2019.04.05
  • Jawad, (2018), J. Taibah Univ. Sci., 12, pp. 371, 10.1080/16583655.2018.1476206
  • Jawad, (2017), Desalination Water Treat., 59, pp. 210, 10.5004/dwt.2017.0097
  • Jawad, (2018), Desalination Water Treat., 105, pp. 322, 10.5004/dwt.2018.22021
  • Amel, (2012), Energy Procedia, 19, pp. 286, 10.1016/j.egypro.2012.05.208
  • Jawad, (2018), Desalination Water Treat., 109, pp. 231, 10.5004/dwt.2018.21976
  • Bulgariu, (2019), J. Mol. Liq., 276, pp. 728, 10.1016/j.molliq.2018.12.001
  • Baruah, (2016), Ind. Crops Prod., 94, pp. 951, 10.1016/j.indcrop.2016.08.034
  • Kumar, (2009), J. Chem. Technol. Biotechnol., 84, pp. 151, 10.1002/jctb.2023
  • Soltanizadeh, (2014), Meat Sci., 99, pp. 75, 10.1016/j.meatsci.2014.09.002
  • (2017), Indian J. Pharm. Educ. Res., 51, pp. S152, 10.5530/ijper.51.3s.3
  • Hanafiah, (2018), Nat. Environ. Pollut. Technol., 17, pp. 1055
  • Noli, (2019), J. Environ. Chem. Eng., 7, pp. 102985, 10.1016/j.jece.2019.102985
  • Giannakoudakis, (2018), J. Environ. Manag., 227, pp. 354, 10.1016/j.jenvman.2018.08.064
  • El-Azazy, M., Dimassi, S., El-Shafie, A., and Issa, A. (2019). Bio-Waste Aloe vera Leaves as an Efficient Adsorbent for Titan Yellow from Wastewater: Structuring of a Novel Adsorbent Using Plackett-Burman Factorial Design. Appl. Sci., 9.
  • Sharif, (2014), J. Food Eng., 124, pp. 105, 10.1016/j.jfoodeng.2013.10.003
  • Tripathi, (2009), Desalination, 249, pp. 1273, 10.1016/j.desal.2009.03.010
  • Montgomery, D.C. (2012). Design and Analysis of Experiments, John Wiley & Sons, Inc.. [8th ed.].
  • Liu, (2019), Environ. Sci. Pollut. Res., 26, pp. 32151, 10.1007/s11356-019-06342-0
  • Ravikumar, (2007), Dye. Pigment., 72, pp. 66, 10.1016/j.dyepig.2005.07.018
  • Katubi, K.M., Amari, A., Harharah, H.N., Eldirderi, M.M., Tahoon, M.A., and Rebah, F. (2021). Ben Aloe vera as Promising Material for Water Treatment: A Review. Processes, 9.
  • Meseguer, (2016), Environ. Sci. Pollut. Res., 23, pp. 24032, 10.1007/s11356-016-7625-x
  • Fiol, (2009), Environ. Chem. Lett., 7, pp. 79, 10.1007/s10311-008-0139-0
  • Wang, (2015), Sci. Total Environ., 533, pp. 32, 10.1016/j.scitotenv.2015.06.087
  • Bouchelkia, (2023), Process Saf. Environ. Prot., 170, pp. 513, 10.1016/j.psep.2022.12.028
  • Largitte, (2016), Chem. Eng. Res. Des., 109, pp. 495, 10.1016/j.cherd.2016.02.006
  • Ighalo, (2020), J. Water Process Eng., 35, pp. 101228, 10.1016/j.jwpe.2020.101228
  • Majd, (2022), Sci. Total Environ., 812, pp. 151334, 10.1016/j.scitotenv.2021.151334
  • Hu, (2019), J. Mol. Liq., 277, pp. 646, 10.1016/j.molliq.2019.01.005
  • Reddy, A.V.B., Rafiq, R., Ahmad, A., Maulud, A.S., and Moniruzzaman, M. (2022). Cross-Linked Ionic Liquid Polymer for the Effective Removal of Ionic Dyes from Aqueous Systems: Investigation of Kinetics and Adsorption Isotherms. Molecules, 27.
  • Wu, (2011), Appl. Biochem. Biotechnol., 163, pp. 882, 10.1007/s12010-010-9092-z
  • Ray, (2018), Mater. Today Proc., 5, pp. 22245, 10.1016/j.matpr.2018.06.590
  • Jamoussi, (2020), Arab. J. Chem., 13, pp. 7459, 10.1016/j.arabjc.2020.08.022
  • Kousha, (2012), Chem. Eng. J., 179, pp. 158, 10.1016/j.cej.2011.10.073
  • Lin, (2021), Ecotoxicol. Environ. Saf., 208, pp. 111451, 10.1016/j.ecoenv.2020.111451
  • Choi, (2016), Appl. Microsc., 46, pp. 76, 10.9729/AM.2016.46.2.76
  • Khuri, A.I., and Cornell, J.A. (1996). Response Surfaces: Designs and Analyses, CRC Taylor & Francis Group. [2nd ed.].
  • Salman, M., Shahid, M., Sahar, T., Naheed, S., Arif, M., Iqbal, M., and Nazir, A. (2020). Development of Regression Model for Bacteriocin Production from Local Isolate of Lactobacillus Acidophilus MS1 Using Box-Behnken Design. Biocatal. Agric. Biotechnol., 24.
  • Mourabet, (2017), Arab. J. Chem., 10, pp. S3292, 10.1016/j.arabjc.2013.12.028
  • Zhang, (2017), J. Mol. Liq., 238, pp. 316, 10.1016/j.molliq.2017.04.022
  • Zaheer, (2019), Mater. Chem. Phys., 232, pp. 109, 10.1016/j.matchemphys.2019.04.064
  • Barral, (2021), J. Environ. Manag., 294, pp. 113005, 10.1016/j.jenvman.2021.113005
  • Khataee, (2013), Int. Biodeterior. Biodegrad., 83, pp. 33, 10.1016/j.ibiod.2013.04.004
  • Bourikas, (2005), Langmuir, 21, pp. 9222, 10.1021/la051434g
  • Daneshvar, (2012), Chem. Eng. J., 195–196, pp. 297, 10.1016/j.cej.2012.04.074
  • Makrygianni, (2019), J. Environ. Chem. Eng., 7, pp. 103163, 10.1016/j.jece.2019.103163
  • Podder, (2016), Compos. Interfaces, 23, pp. 327, 10.1080/09276440.2016.1137715
  • (2020), J. Hazard. Mater., 393, pp. 122383, 10.1016/j.jhazmat.2020.122383
  • Jin, (2008), J. Colloid Interface Sci., 328, pp. 243, 10.1016/j.jcis.2008.08.066
  • Albadarin, (2015), J. Environ. Manag., 164, pp. 86, 10.1016/j.jenvman.2015.08.040
  • Hamzeh, (2012), Mater. Sci. Eng. C, 32, pp. 1394, 10.1016/j.msec.2012.04.015
  • Silva, (2004), Sep. Purif. Technol., 40, pp. 309, 10.1016/j.seppur.2004.03.010
  • Sheshmani, (2014), Int. J. Biol. Macromol., 68, pp. 218, 10.1016/j.ijbiomac.2014.04.057
  • Carmalin, (2018), Ecotoxicol. Environ. Saf., 150, pp. 1, 10.1016/j.ecoenv.2017.12.026
  • Li, (2018), J. Environ. Sci., 73, pp. 20, 10.1016/j.jes.2017.12.024
  • Abramian, (2009), Chem. Eng. J., 150, pp. 403, 10.1016/j.cej.2009.01.019