A global-scale framework for hydropower development incorporating strict environmental constraints
- Xu, Rongrong
- Zeng, Zhenzhong
- Pan, Ming
- Ziegler, Alan D.
- Holden, Joseph
- Spracklen, Dominick V.
- Brown, Lee E.
- He, Xinyue
- Chen, Deliang
- Ye, Bin
- Xu, Haiwei
- Jerez, Sonia 1
- Zheng, Chunmiao
- Liu, Junguo
- Lin, Peirong
- Yang, Yuan
- Zou, Junyu
- Wang, Dashan
- Gu, Mingyi
- Yang, Zongliang
- Li, Dongfeng
- Huang, Junling
- Lakshmi, Venkataraman
- Wood, Eric. F.
-
1
Universidad de Murcia
info
ISSN: 2731-6084
Año de publicación: 2023
Volumen: 1
Número: 1
Páginas: 113-122
Tipo: Artículo
Otras publicaciones en: Nature Water
Información de financiación
Financiadores
-
National Natural Science Foundation of China
- 42071022
- 72173058
Referencias bibliográficas
- Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 24, 38–50 (2019).
- Hart, E. K. & Jacobson, M. The carbon abatement potential of high penetration intermittent renewables. Energy Environ. Sci. 5, 6592–6601 (2012).
- Jacobson, M. et al. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ. Sci. https://doi.org/10.1039/D2EE00722C (2022).
- Global Energy Review 2021 (International Energy Agency, 2021); https://www.iea.org/reports/global-energy-review-2021
- Moran, E. et al. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).
- Latrubesse, E. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).
- Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).
- Lehner, B., Czisch, G. & Vassolo, S. The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33, 839–855 (2005).
- Fekete, B. et al. Millennium ecosystem assessment scenario drivers (1970–2050): climate and hydrological alterations. Global Biogeochem. Cycles 24, GB0A12 (2010).
- Zhou, Y. et al. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8, 2622–2633 (2015).
- Gernaat, D. et al. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).
- Hoes, O. C. et al. Systematic high-resolution assessment of global hydropower potential. PLoS ONE 2, e0171844 (2017).
- Ziv, G. et al. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2013).
- Pastor, A. V. et al. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).
- Jacobson, M. et al. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl Acad. Sci. USA 112, 15060–15065 (2015).
- An Assessment of Energy Potential at Non-Powered Dams in the United States (US Department of Energy, 2021); https://www.energy.gov/eere/water/downloads/assessment-energy-potential-non-powered-dams-united-states
- Kareiva, P. Dam choices: analyses for multiple needs. Proc. Natl Acad. Sci. USA 109, 5553–5554 (2012).
- Poff, N. & Schmidt, J. How dams can go with the flow. Science 353, 1099–1100 (2016).
- Poff, N. & Olden, J. Can dams be designed for sustainability? Science 358, 1252–1253 (2017).
- Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).
- OpenStreetMap (OSMF, 2021); www.openstreetmap.org
- Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).
- Mulligan, M., Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).
- Wang, J. et al. GeoDAR: georeferenced global dam and reservoir dataset for bridging attributes and geolocations. Earth Syst. Sci. Data 14, 1869–1899 (2022).
- IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
- Li, D. et al. High mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosci. https://doi.org/10.1038/s41561-022-00953-y (2022).
- Cáceres, A. et al. Potential hydropower contribution to mitigate climate risk and build resilience in Africa. Nat. Clim. Change 12, 719–727 (2022).
- Bertassoli, D. J. Jr et al. How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia. Sci. Adv. 7, eabe1470 (2021).
- Millstein, D. et al. Solar and wind grid system value in the United States: the effect of transmission congestion, generation profiles, and curtailment. Joule 21, 1749–1775 (2021).
- Rehman, S., Al-Hadhrami, L. M. & Alam, Md. M. Pumped hydro energy storage system: a technological review. Renew. Sustain. Energy Rev. 44, 586–598 (2015).
- Stocks, M. et al. Global atlas of closed-loop pumped hydro energy storage. Joule 5, 270–281 (2021).
- Hunt, J. et al. Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nat. Commun. 11, 947 (2020).
- Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).
- Tamba, J. et al. Carbon dioxide emissions from thermal power plants in Cameroon: a case study in Dibamba Power Development Company. Low Carbon Econ. 4, 35–40 (2013).
- Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
- Hwang, S., Cao, Y. & Xi, J. The short-term impact of involuntary migration in China’s Three Gorges: a prospective study. Social Indic. Res. 101, 73–92 (2011).
- Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).
- Schiermeier, Q. Europe is demolishing its dams to restore ecosystems. Nature 557, 290–291 (2018).
- Sharma, S., Waldman, J., Afshari, S. & Fekete, B. Status, trends and significance of American hydropower in the changing energy landscape. Renew. Sustain. Energy Rev. 101, 112–122 (2019).
- Arbuckle, E. et al. Insights for Canadian electricity generation planning from an integrated assessment model: should we be more cautious about hydropower cost overruns. Energy Policy 150, 112138 (2021).
- Nazareno, A. & Lovejoy, T. Giant dam threatens Brazilian rainforest. Nature 478, 37 (2011).
- Pritchard, H. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).
- Ran, L. & Lu, X. X. Cooperation is key to Asian hydropower. Nature 473, 452 (2011).
- Hugonnet, R., McNabb, R. & Berthier, E. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
- Farinotti, D., Pistocchi, A. & Huss, M. From dwindling ice to headwater lakes: could dams replace glaciers in the European Alps? Environ. Res. Lett. 11, 054022 (2016).
- Shukla, T. & Sen, I. Preparing for floods on the Third Pole. Science 372, 232–234 (2021).
- Jacobson, M. et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1, 15–17 (2017).
- Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).
- Yamazaki, D., Ikeshima, D. & Sosa, J. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).
- Beck, H. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).
- The World Database on Protected Areas (WDPA) (UNEP-WCMC, 2015)
- KML Layer of Natural and Mixed World Heritage Sites as Recorded in the World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2013); https://www.arcgis.com/home/item.html?id=ef1ecce8fa3e41d89688be6199b5b32c
- Lehner, B. & Dölla, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).
- Turubanova, S., Potapov, P. & Tyukavina, A. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).
- Xu, J., Morris, P., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
- LandScan 2019 Global Population Database (Oak Ridge National Laboratory, 2020); https://landscan.ornl.gov/
- Fischer G. et al. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008) (IIASA, Laxenburg, Austria and FAO, 2008); https://pure.iiasa.ac.at/id/eprint/6182/1/IR-00-064.pdf
- Shedlock, K. M., Giardini, D., Grunthal, G. & Zhang, P. The GSHAP Global Seismic Hazard Map. Seismol. Res. Lett. 71, 679–686 (2000).
- Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
- Farinotti, D. et al. Large hydropower and water-storage potential in future glacier-free basins. Nature 575, 341–344 (2019).
- Kummu, M., Taka, M. & Guillaume, J. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018).
- UK National Ecosystem Assessment Technical Report (UNEP-WCMC, 2011); http://uknea.unep-wcmc.org/
- Land Values 2020 Summary (United States Department of Agriculture, 2020); https://www.nass.usda.gov/Publications/Todays_Reports/reports/land0820.pdf#:~:text=4%20Land%20Values%202020%20Summary%20%28August%202020%29%20USDA%2C,per%20acre%20for%202020%2C%20no%20change%20from%202019
- Spawn, S., Sullivan, C., Lark, T. & Gibbs, H. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).
- IUCN and CIESIN, Global Amphibian Richness Grids, 2015 Release (2013) (NASA and SEDAC, 2015); https://doi.org/10.7927/H4RR1W66
- National Inventory of Dams (Federal Emergency Management Agency, 2022); https://www.fema.gov/emergency-managers/risk-management/dam-safety/national-inventory-dams