Visible light-promoted metal-free aerobic photooxidation of xanthenes, thioxanthenes and dihydroacridines in deep eutectic solvents
- Burlingham, Sarah-Jayne
- Torregrosa-Chinillach, Alejandro
- Alonso, Diego A. 1
- Chinchilla, Rafael 1
-
1
Universitat d'Alacant
info
ISSN: 2773-2231
Year of publication: 2023
Volume: 2
Pages: 100030
Type: Article
More publications in: Tetrahedron Green Chem
Abstract
Benzylic systems such as 9H-xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones or acridones, respectively, in deep eutectic solvents by a visible blue light-promoted photooxidation procedure carried out using ambient air as oxidant in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or almost quantitative, and the reaction media can be recovered and reused. The environmental friendliness of the protocol is demonstrated based on several green metrics.
Funding information
Funders
-
Gobierno de España Ministerio de Ciencia e Innovación
- PID2021-127332NB-I00
- Generalitat Valenciana
- Ministerio de Ciencia e Innovación
-
Generalidad Valenciana Consejería de Innovación Universidades Ciencia y Sociedad Digital
- AICO 2021/013
-
Universidad de Alicante
- UAUSTI 2022
- VIGROB-173
Bibliographic References
- Liu, (2017), Natl. Sci. Rev., 4, pp. 359, 10.1093/nsr/nwx039
- Stephenson, (2018)
- Narayanam, (2011), Chem. Soc. Rev., 40, pp. 102, 10.1039/B913880N
- Tucker, (2012), J. Org. Chem., 77, pp. 1617, 10.1021/jo202538x
- Xuan, (2012), Angew. Chem. Int. Ed., 51, pp. 6828, 10.1002/anie.201200223
- Gambarotti, (2013), Curr. Org. Chem., 17, pp. 2406, 10.2174/13852728113179990054
- Prier, (2013), Chem. Rev., 113, pp. 5322, 10.1021/cr300503r
- Nicewicz, (2014), ACS Catal., 4, pp. 355, 10.1021/cs400956a
- Angnes, (2015), Org. Biomol. Chem., 13, pp. 9152, 10.1039/C5OB01349F
- Shaw, (2016), J. Org. Chem., 81, pp. 6898, 10.1021/acs.joc.6b01449
- Crisenza, (2020), Nat. Commun., 11, pp. 803, 10.1038/s41467-019-13887-8
- Mateus-Ruiz, (2020), Synthesis, 52, pp. 3111, 10.1055/s-0040-1707225
- Fukuzumi, (2014), Org. Biomol. Chem., 12, pp. 6059, 10.1039/C4OB00843J
- Ravelli, (2012), ChemCatChem, 4, pp. 169, 10.1002/cctc.201100363
- Uygur, (2019), Org. Biomol. Chem., 17, pp. 5475, 10.1039/C9OB00834A
- Revathi, (2018), Adv. Synth. Catal., 360, pp. 4652, 10.1002/adsc.201800736
- Zhang, (2019), ChemSusChem, 12, pp. 2898, 10.1002/cssc.201900414
- Zhang, (2018), Green Chem., 20, pp. 4790, 10.1039/C8GC02382D
- Torregrosa-Chinillach, (2022), Molecules, 27, pp. 497, 10.3390/molecules27020497
- Resende, (2020), Org. Chem. Front., 7, pp. 3027, 10.1039/D0QO00659A
- Ramakrishnan, (2020), Chem. Pap., 75, pp. 455, 10.1007/s11696-020-01320-0
- Klein-Júnior, (2020), Chem. Biodivers., 17, 10.1002/cbdv.201900499
- Feng, (2020), Molecules, 25, pp. 598, 10.3390/molecules25030598
- Ng, (2019), Phcog. Rev., 13, pp. 28, 10.4103/phrev.phrev_25_18
- Bedi, (2018), Asian J. Pharmaceut. Clin. Res., 11, pp. 12, 10.22159/ajpcr.2018.v11i2.22426
- Paiva, (2013), Curr. Med. Chem., 20, pp. 2438, 10.2174/0929867311320190004
- Alwan, (2015), Med. Chem., 15, pp. 1012
- Sepúlveda, (2013), Curr. Med. Chem., 20, pp. 2402, 10.2174/0929867311320190002
- Cholewiński, (2011), Pharmacol. Rep., 63, pp. 305, 10.1016/S1734-1140(11)70499-6
- Vanover, (2010), Org. Lett., 12, pp. 2246, 10.1021/ol1005938
- Mühldorf, (2016), Angew. Chem. Int. Ed., 55, pp. 427, 10.1002/anie.201507170
- Liu, (2017), Asian J. Org. Chem., 6, pp. 422, 10.1002/ajoc.201600426
- Li, (2018), Org. Chem. Front., 5, pp. 380, 10.1039/C7QO00798A
- Finney, (2018), Green Chem., 20, pp. 2242, 10.1039/C7GC03741D
- Sarma, (2019), Green Chem., 21, pp. 6717, 10.1039/C9GC02658D
- Geng, (2019), Green Chem., 21, pp. 6116, 10.1039/C9GC02870F
- Pan, (2019), Synlett, 30, pp. 218, 10.1055/s-0037-1610678
- Xiang, (2017), Org. Lett., 19, pp. 3009, 10.1021/acs.orglett.7b01270
- Tolba, (2020), Eur. J. Org. Chem., pp. 1579, 10.1002/ejoc.201901628
- Jung, (2013), Inorg. Chem., 52, pp. 13594, 10.1021/ic402121j
- Pandey, (2014), Adv. Synth. Catal., 356, pp. 2813, 10.1002/adsc.201400107
- Clark, (2017)
- Clarke, (2018), Chem. Rev., 118, pp. 747, 10.1021/acs.chemrev.7b00571
- García-Alvarez, (2015), Eur. J. Inorg. Chem., pp. 5147, 10.1002/ejic.201500892
- Liu, (2015), RSC Adv., 5, pp. 48675, 10.1039/C5RA05746A
- Alonso, (2016), Eur. J. Org. Chem., pp. 612, 10.1002/ejoc.201501197
- Guajardo, (2016), ChemCatChem, 8, pp. 1020, 10.1002/cctc.201501133
- Liu, (2018), J. Nat. Prod., 81, pp. 679, 10.1021/acs.jnatprod.7b00945
- Marcus, (2019)
- Liu, (2022), J. Mol. Liq., 362
- Thakur, (2022), Curr. Org. Chem., 26, pp. 299, 10.2174/1385272826666220126165925
- Yu, (2022), Cell Rep. Phys. Sci., 3
- Hooshmand, (2023), J. Mol. Liq., 371, 10.1016/j.molliq.2022.121013
- Prabhune, (2023), J. Mol. Liq., 379, 10.1016/j.molliq.2023.121676
- Ramón, (2019)
- Procopio, (2023), Adv. Synth. Catal., 365, pp. 1, 10.1002/adsc.202201082
- CGA. https://www.cganet.com/cga-m-24-publication-guides-mitigation-of-oxygen-hazards-in-healthcare-environments/.
- EIGA. https://www.eiga.eu/uploads/documents/DOC004.pdf.
- Torregrosa-Chinillach, (2021), Molecules, 26, pp. 974, 10.3390/molecules26040974
- Deng, (2019), Food Chem., 274, pp. 891, 10.1016/j.foodchem.2018.09.048
- van Aken, (2006), Beilstein J. Org. Chem., 2, pp. 3, 10.1186/1860-5397-2-3
- Andraos, (2019)