Considerations about the inhibition of monophenolase and diphenolase activities of tyrosinase. Characterization of the inhibitor concentration which generates 50 % of inhibition, type and inhibition constants. A review

  1. García Molina, Pablo 1
  2. Saura-Sanmartin, Adrian 1
  3. Berná, José 1
  4. Teruel, Jose Antonio 1
  5. Muñoz Muñoz, Jose Luis 3
  6. Rodríguez López, Jose Neptuno 1
  7. García Cánovas, Francisco 1
  8. García Molina, Francisco 2
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  2. 2 Hospital General Universitario Reina Sofía
    info

    Hospital General Universitario Reina Sofía

    Murcia, España

    ROR https://ror.org/037n5ae88

  3. 3 Northumbria University
    info

    Northumbria University

    Newcastle-upon-Tyne, Reino Unido

    ROR https://ror.org/049e6bc10

Revista:
International Journal of Biological Macromolecules

ISSN: 0141-8130 1879-0003

Año de publicación: 2024

Volumen: 267

Páginas: 131513

Tipo: Artículo

DOI: 10.1016/J.IJBIOMAC.2024.131513 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Biological Macromolecules

Resumen

Tyrosinase is a copper oxidase enzyme which catalyzes the first two steps in the melanogenesis pathway, L-tyrosine to L-dopa conversion and, then, to o-dopaquinone and dopachrome. Hypopigmentation and, above all, hyperpigmentation issues can be originated depending on their activity. This enzyme also promotes the browning of fruits and vegetables. Therefore, control of their activity by regulators is research topic of great relevance. In this work, we consider the use of inhibitors of monophenolase and diphenolase activities of the enzyme in order to accomplish such control. An experimental design and data analysis which allow the accurate calculation of the degree of inhibition of monophenolase activity (iM) and diphenolase activity (iD) are proposed. The IC50 values (amount of inhibitor that causes 50 % inhibition at a fixed substrate concentration) can be calculated for the two activities and from the values of IC50M (monophenolase) and IC50D(diphenolase). Additionally, the strength and type of inhibition can be deduced from these values. The data analysis from these IC50D values allows to obtain the values of [Formula: see text] or [Formula: see text] , or and [Formula: see text] from the values of IC50M. In all cases, the values of the different must satisfy their relationship with IC50M and IC50D.

Referencias bibliográficas

  • Kanteev, (2015), Protein Sci., 24, pp. 1360, 10.1002/pro.2734
  • Sánchez-Ferrer, (1995), Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1247, pp. 1, 10.1016/0167-4838(94)00204-T
  • Kim, (2021), Int. J. Mol. Sci., 22
  • Rodríguez-López, (1993), Biochem. J., 293, pp. 859, 10.1042/bj2930859
  • Singh, (2018), pp. 63
  • Zolghadri, (2019), J. Enzyme Inhib. Med. Chem., 34, pp. 279, 10.1080/14756366.2018.1545767
  • Zhang, (2021), J. Enzyme Inhib. Med. Chem., 36, pp. 2104, 10.1080/14756366.2021.1983559
  • Riaz, (2020), Mini. Rev. Org. Chem., 17
  • Peng, (2021), Crit. Rev. Food Sci. Nutr., pp. 1
  • Li, (2021), Eur. J. Med. Chem., 224, 10.1016/j.ejmech.2021.113744
  • Pillaiyar, (2015), Expert Opin. Ther. Pat., 25, pp. 775, 10.1517/13543776.2015.1039985
  • Pillaiyar, (2018), J. Med. Chem., 61, pp. 7395, 10.1021/acs.jmedchem.7b00967
  • Fenoll, (2001), Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1548, pp. 1, 10.1016/S0167-4838(01)00207-2
  • Ros, (1994), Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1204, pp. 33, 10.1016/0167-4838(94)90029-9
  • Molina, (2007), Int. J. Biochem. Cell Biol., 39, pp. 238, 10.1016/j.biocel.2006.08.007
  • Ortiz-Ruiz, (2015), IUBMB Life, 67, pp. 757, 10.1002/iub.1432
  • Ortiz-Ruiz, (2015), J. Agric. Food Chem., 63, pp. 2162, 10.1021/jf5051816
  • Rodríguez-López, (2001), Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1548, pp. 238, 10.1016/S0167-4838(01)00237-0
  • García-Molina, (2009), J. Agric. Food Chem., 57, pp. 1143, 10.1021/jf803447g
  • Peñalver, (2002), Anal. Biochem., 309, pp. 180, 10.1016/S0003-2697(02)00312-3
  • Segel, (1975)
  • Copeland, (2000)
  • García-Molina, (2022), Molecules, 27, 10.3390/molecules27103141
  • Yung-Chi, (1973), Biochem. Pharmacol., 22, pp. 3099, 10.1016/0006-2952(73)90196-2
  • Cortés, (2001), Biochem. J., 357, pp. 263, 10.1042/bj3570263
  • Buker, (2019), SLAS Discov. Adv. Life Sci. R D., 24, pp. 515, 10.1177/2472555219829898
  • Fenoll, (2002), Int. J. Biochem. Cell Biol., 34, pp. 332, 10.1016/S1357-2725(01)00133-9
  • Xie, (2003), Int. J. Biochem. Cell Biol., 35, pp. 1658, 10.1016/S1357-2725(03)00006-2
  • Xie, (2003), Biochem, 68, pp. 487
  • Gong, (2005), Chin. J. Chem. Eng., 13, pp. 771
  • Huang, (2006), J. Enzyme Inhib. Med. Chem., 21, pp. 413, 10.1080/14756360500094193
  • Baek, (2009), Bioorg. Med. Chem., 17, pp. 35, 10.1016/j.bmc.2008.11.022
  • Vaezi, (2022), Chem. Afr., 5, pp. 1873, 10.1007/s42250-022-00466-6
  • Gong, (2013), Adv. Mater. Res., 634–638, pp. 655, 10.4028/www.scientific.net/AMR.634-638.655
  • Gong, (2013), J. Cosmet. Sci., 64, pp. 235
  • Gong, (2014), Adv. Mater. Res., 1033–1034, pp. 12, 10.4028/www.scientific.net/AMR.1033-1034.12
  • Cho, (2015), J. Appl. Biol. Chem., 58, pp. 295, 10.3839/jabc.2015.047
  • Manh Khoa, (2023), Bioorg. Chem., 134, 10.1016/j.bioorg.2023.106464
  • He, (2021), Food Chem., 362, 10.1016/j.foodchem.2021.130241
  • Hałdys, (2021), Pharmaceuticals, 14, 10.3390/ph14010074
  • Lee, (2023), Molecules, 28
  • Peng, (2023), Food Chem., 419, 10.1016/j.foodchem.2023.136106
  • Wang, (2004), Protein J., 23, pp. 303, 10.1023/B:JOPC.0000032649.60933.58
  • Bayrakçeken Güven, (2023), J. Ethnopharmacol., 310, 10.1016/j.jep.2023.116378
  • İmamoğlu, (2022), Bioorg. Med. Chem. Lett., 65, 10.1016/j.bmcl.2022.128722
  • Chen, (2003), J. Enzyme Inhib. Med. Chem., 18, pp. 491, 10.1080/14756360310001613094
  • Chen, (2003), J. Protein Chem., 22, pp. 607, 10.1023/B:JOPC.0000008725.31444.1e
  • Song, (2005), J. Enzyme Inhib. Med. Chem., 20, pp. 239, 10.1080/14756360400026238
  • Gong, (2013), Adv. Mater. Res., 641–642, pp. 967, 10.4028/www.scientific.net/AMR.641-642.967
  • Gong, (2016), pp. 630
  • Shao, (2018), Food Chem., 242, pp. 174, 10.1016/j.foodchem.2017.09.054
  • Cao, (2022), Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 281, 10.1016/j.saa.2022.121590
  • Zhu, (2022), Food Chem., 385, 10.1016/j.foodchem.2022.132730
  • He, (2023), Food Chem., 419, 10.1016/j.foodchem.2023.136047
  • Liu, (2015), J. Biosci. Bioeng., 119, pp. 275, 10.1016/j.jbiosc.2014.08.014
  • Bandyopadhyay, (2009), J. Agric. Food Chem., 57, pp. 9780, 10.1021/jf902100k
  • Lin, (2012), Food Chem., 132, pp. 2074, 10.1016/j.foodchem.2011.12.052
  • Guo, (2022), Food Chem., 393, 10.1016/j.foodchem.2022.133423
  • Biswas, (2016), Nat. Prod. Res., 30, pp. 1451, 10.1080/14786419.2015.1062376
  • Qu, (2020), Molecules, 25, 10.3390/molecules25020344
  • Qin, (2014), PLoS One, 9, 10.1371/journal.pone.0109398
  • Garcia-Jimenez, (2017), PLoS One, 12, 10.1371/journal.pone.0177330
  • Mann, (2018), J. Invest. Dermatol., 138, pp. 1601, 10.1016/j.jid.2018.01.019
  • Buitrago, (2021), Chem. – A Eur. J., 27, pp. 4384, 10.1002/chem.202004695