The Arsenic Biogeochemical Cycle: A Review

  1. Martínez López, Salvadora
  2. Banegas García, Ascensión
  3. Pérez Sirvent, Carmen
  4. Martínez Sánchez, Maria José
  5. Esteban Abad, Maria Angeles
Zeitschrift:
Advances in Environmental and Engineering Research

ISSN: 2766-6190

Datum der Publikation: 2023

Ausgabe: 04

Nummer: 04

Seiten: 1-26

Art: Artikel

DOI: 10.21926/AEER.2304051 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Advances in Environmental and Engineering Research

Ziele für nachhaltige Entwicklung

Zusammenfassung

This paper reviews the arsenic in the environment. Arsenic contamination is currently one of the leading environmental problems worldwide. The arsenic (As) cycle is the subject of this article because As is an element with a significant impact on living beings and because of its interrelation with other biogeochemical cycles. The biogeochemical cycle of As is closed, so this trace element returns to sediments where it can be changed in its chemical state by micro-organisms present in soils. In addition, some minerals contribute to the sequestration and retention of As. This element interferes with other critical biogeochemical cycles such as sulfur, phosphorus, iron, manganese, and antimony. Another factor to consider is determining the content and interference of organic matter in the soil, as it forms very stable compounds with As. On the other hand, in aquatic environmental conditions, with a high concentration of organic matter and anaerobiosis, a reducing environment is created that facilitates the mobilization of As in the sediments.

Bibliographische Referenzen

  • Watanabe MD, Ortega E. Ecosystem services and biogeochemical cycles on a global scale: Valuation of water, carbon and nitrogen processes. Environ Sci Policy. 2011; 14: 594-604.
  • Stüeken EE, Kipp MA, Koehler MC, Buick R. The evolution of Earth's biogeochemical nitrogen cycle. Earth Sci Rev. 2016; 160: 220-239.
  • Martínez Sánchez MJ, Pérez Sirvent C, Garcia Lorenzo ML, Martínez Lopez S, Bech J, Hernandez C, et al. Ecoefficient in situ technologies for the remediation of sites affected by old mining activities: The case of Portman Bay. In: Assessment, Restoration and Reclamation of Mining Influenced Soils. Cambridge, MA, US: Academic Press; 2017. pp. 355-373.
  • Enrich Prast A, Gaxiola A, Santoro AL, Durán J, Rodríguez A, Marotta H. Capítulo 6. Ciclos biogeoquímicos y cambios globales. Gipuzkoa, Spain: Universidad de Mondragón - Mondragon Unibertsitatea (MU); 2018.
  • Janes Bassett V, Davies J, Rowe EC, Tipping E. Simulating long-term carbon nitrogen and phosphorus biogeochemical cycling in agricultural environments. Sci Total Environ. 2020; 714: 136599.
  • Awuah KF, Jegede O, Cousins M, Renaud M, Hale B, Siciliano SD. Response addition is more protective of biogeochemical cycles of carbon and phosphorus compared to concentration addition. Environ Pollut. 2022; 311: 119935.
  • Huang T, Hu Q, Shen Y, Anglés A, Fernández Remolar D. Biogeochemical Cycles. In: Reference Module in Life Sciences. Amsterdam, Netherlands: Elsevier; 2023. ISBN: 9780128096338.
  • Lièvremont D, Bertin PN, Lett MC. Arsenic in contaminated waters: Biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie. 2009; 91: 1229-1237.
  • Hussain MM, Bibi I, Niazi NK, Shahid M, Iqbal J, Shakoor MB, et al. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Sci Total Environ. 2021; 773: 145040.
  • Zhao Y, Zhao H, Abashina T, Vainshtein M. Review on arsenic removal from sulfide minerals: An emphasis on enargite and arsenopyrite. Miner Eng. 2021; 172: 107133.
  • Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J. Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. Sci Total Environ. 2018; 612: 148-169.
  • Valskys V, Hassan HR, Wołkowicz S, Satkūnas J, Kibirkštis G, Ignatavičius G. A review on detection techniques, health hazards and human health risk assessment of arsenic pollution in soil and groundwater. Minerals. 2022; 12: 1326. doi: 10.3390/min12101326.
  • Chen QY, Costa M. Arsenic: A global environmental challenge. Annu Rev Pharmacol Toxicol. 2021; 61: 47-63.
  • Fatoki JO, Badmus JA. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. J Hazard Mater. 2022; 5: 10005.
  • Shaji E, Santosh M, Sarath KV, Prakash P, Deepchand V, Divya BV. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci Front. 2021; 12: 101079.
  • Agency for toxic substances and disease registry (ATSDR). ATSDR’s substance priority list [Internet]. Agency for toxic substances and disease registry; 2017. Available from: https://www.atsdr.cdc.gov/spl/#2017spl.
  • Wang S, Mulligan CN. Speciation and surface structure of inorganic arsenic in solid phases: A review. Environ Int. 2008; 34: 867-879.
  • Bhattacharya P, Adhikari S, Samal AC, Das R, Dey D, Deb A, et al. Health risk assessment of cooccurrence of toxic fluoride and arsenic in groundwater of Dharmanagar region, North Tripura (India). Groundw Sustain Dev. 2020; 11: 100430.
  • International Agency for Research on Cancer. Some drinking-water disinfectants and contaminants, including arsenic. Lyon, France: International Agency for Research on Cancer; 2004. p. 512.
  • Martínez Sánchez MJ, Martínez López S, García Lorenzo ML, Martínez Martínez LB, Pérez Sirvent C. Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. Geoderma. 2011; 160: 535-541.
  • Martínez López S, Andreo Martínez P, Pérez Sirvent C, Sánchez MJ. Mineralogía y dinámica del arsénico en suelos de mina. Afinidad. 2022; 79: 255-263.
  • Martínez López S. Técnicas de estudio en la transferencia de Arsénico del suelo a la población y el ecosistema. Innovación en la gestión e investigación ambiental. Murcia, Spain: Diego Marín Librero Editor; 2015. pp. 539-571.
  • Shen S, Li XF, Cullen WR, Weinfeld M, Le XC. Arsenic binding to proteins. Chem Rev. 2013; 113: 7769-7792.
  • Ruiz Chancho MJ, López Sánchez JF, Schmeisser E, Goessler W, Francesconi KA, Rubio R. Arsenic speciation in plants growing in arsenic-contaminated sites. Chemosphere. 2008; 71: 1522-1530.
  • Mandal BK, Suzuki KT. Arsenic round the world: A review. Talanta. 2002; 58: 201-235.
  • Ghosh D, Ghosh A, Bhadury P. Arsenic through aquatic trophic levels: Effects, transformations and biomagnification-a concise review. Geosci Lett. 2022; 9: 20. doi: 10.1186/s40562-022-00225-y.
  • Zhang W, Miao AJ, Wang NX, Li C, Sha J, Jia J, et al. Arsenic bioaccumulation and biotransformation in aquatic organisms. Environ Int. 2022; 163: 107221.
  • Pettine M, Camusso M, Martinotti W. Dissolved and particulate transport of arsenic and chromium in the Po River (Italy). Sci Total Environ. 1992 ;119: 253-280.
  • Francesconi KA, Edmonds JS. Arsenic and marine organisms. Adv Inorg Chem. 1996; 44: 147-189.
  • Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP. Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci. 2014; 42: 443-467.
  • Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J. The environmental geochemistry of arsenic -an overview-. Rev Mineral Geochem. 2014; 79: 1-16.
  • Naidu R, Biswas B, Willett IR, Cribb J, Singh BK, Nathanail CP, et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ Int. 2021; 156: 106616.
  • Chételat J, Palmer MJ, Paudyn K, Jamieson H, Amyot M, Harris R, et al. Remobilization of legacy arsenic from sediment in a large subarctic waterbody impacted by gold mining. J Hazard Mater. 2023; 452: 131230.
  • Kumarathilaka P, Seneweera S, Ok YS, Meharg AA, Bundschuh J. Mitigation of arsenic accumulation in rice: An agronomical, physico-chemical, and biological approach-A critical review. Crit Rev Environ Sci Technol. 2020; 50: 31-71. doi: 10.1080/10643389.2019.1618691.
  • Nava Reyna E, Medrano Macías J. Arsenic occurrence in the environment: Current situation of the Comarca Lagunera in northern Mexico and bioremediation approaches. J Agric Food Res. 2022; 10: 100379.
  • Francesconi KA, Kuehnelt D. Determination of arsenic species: A critical review of methods and applications, 2000-2003. Analyst. 2004; 129: 373-395.
  • Drahota P, Rohovec J, Filippi M, Mihaljevič M, Rychlovský P, Červený V, et al. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Sci Total Environ. 2009; 407: 3372-3384.
  • Nazari AM, Radzinski R, Ghahreman A. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy. 2017; 174: 258-281.
  • Cornelis R, Caruso J, Crews H, Heumann K. Handbook of Elemental Speciation II–Species in the Environment, Food, Medicine and Occupational Health. Hoboken, NJ, US: John Wiley & Sons, Ltd; 2005.
  • Nriagu JO, Azcue JM. Environmental sources of arsenic in food. Adv Environ Sci Technol. 1990; 23: 103-127.
  • Díaz JA, Serrano J, Leiva E. Bioleaching of arsenic-bearing copper ores. Minerals. 2018; 8: 215.
  • Baur WH, Onishi BMH. Arsenic. In: Handbook of Geochemistry. Berlin, Germany: Springer Berlin, Heidelberg; 1969.
  • Boyle RW, Jonasson IR. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor. 1973; 2: 251-296.
  • Pichler T, Veizer JA, Hall GE. Natural input of arsenic into a coral-reef ecosystem by hydrothermal fluids and its removal by Fe (III) oxyhydroxides. Environ Sci Technol. 1999; 33: 1373-1378.
  • Liu X, Zeng B, Lin G. Arsenic (As) contamination in sediments from coastal areas of China. Mar Pollut Bull. 2022; 175: 113350.
  • Yin S, Zhang X, Yin H, Zhang X. Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: A review. Microbiol Res. 2022; 258: 126990.
  • Jan R, Asif S, Asaf S, Du XX, Park JR, Nari K, et al. Melatonin alleviates arsenic (As) toxicity in rice plants via modulating antioxidant defense system and secondary metabolites and reducing oxidative stress. Environ Pollut. 2023; 318: 120868.
  • Huang M, Chen X, Zhao Y, Chan CY, Wang W, Wang X, et al. Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes. Environ Pollut. 2014; 188: 37-44.
  • Sun H, Wang Y, Liu R, Yin P, Li D, Shao L. Speciation and source changes of atmospheric arsenic in Qingdao from 2016 to 2020-Response to control policies in China. Chemosphere. 2023; 313: 137438.
  • Wang S, Mulligan CN. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Sci Total Environ. 2006; 366: 701-721.
  • Yang G, Ma L, Xu D, Li J, He T, Liu L, et al. Levels and speciation of arsenic in the atmosphere in Beijing, China. Chemosphere. 2012; 87: 845-850.
  • Baker BA, Cassano VA, Murray C. Arsenic exposure, assessment, toxicity, diagnosis, and management: Guidance for occupational and environmental physicians. J Occup Environ Med. 2018; 60: e634-e639.
  • US Occupational Safety and Health Administration (USOSHA). OSHA Standard for inorganic arsenic [Internet]. Washington, DC, US: US Occupational Safety and Health Administration; 2001. Available from: https://www.osha.gov/pls/oshaweb/owadisp.show_document.
  • World Health Organization (WHO). Arsenic and arsenic compounds (224) (Environmental Health Criteria). 2nd ed. Geneva, Switzerland: World Health Organization; 2001.
  • Sánchez Rodas D, de la Campa AM, De la Rosa JD, Oliveira V, Gómez Ariza JL, Querol X, et al. Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere. 2007; 66: 1485-1493. doi: 10.1016/j.chemosphere.2006.08.043.
  • Tsai YI, Kuo SC, Lin YH. Temporal characteristics of inhalable mercury and arsenic aerosols in the urban atmosphere in southern Taiwan. Atmos Environ. 2003; 37: 3401-3411. doi: 10.1016/S1352-2310(03)00358-3.
  • Wang J, Wan Y, Cheng L, Xia W, Li Y, Xu S. Arsenic in outdoor air particulate matter in China: Tiered study and implications for human exposure potential. Atmos Pollut Res. 2020; 11: 785-792. doi: 10.1016/ j.apr.2020.01.006.
  • Patel KS, Pandey PK, Martín Ramos P, Corns WT, Varol S, Bhattacharya P, et al. A review on arsenic in the environment: Contamination, mobility, sources, and exposure. RSC Adv. 2023; 13: 8803-8821.
  • Adriano DC. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals. 2nd ed. New York, US: Springer; 2001. p. 867.
  • Raessler M. The arsenic contamination of drinking and groundwaters in Bangladesh: Featuring biogeochemical aspects and implications on public health. Arch Environ Contam Toxicol. 2018; 75: 1-7.
  • Martínez Sánchez MJ, Pérez Sirvent C. Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. Murcia: Universidad de Murcia y Consejería de Desarrollo Sostenible y Ordenación del Territorio; 2007. p. 306.
  • Carbonell Barrachina AA, Burló Carbonell FM, Mataix Beneyto JJ. Arsénico en el Sistema Suelo-Planta. San Vicente del Raspeig: Publicaciones de la Universidad de Alicante; 1995.
  • Muñoz Vera A. Impacto de los Residuos de la Minería Metálica Sobre el Ecosistema Maríno del Mar Menor. Murcia, Spain: Polytechnic University of Cartagena; 2016.
  • Ministry of the Environment. Government Decree on the Assessment of Soil Contamination and Remediation Needs. Finland: Ministry of the Environment; 2007.
  • Macías Vázquez F, Calvo de Anta R. Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Santiago, Spain: Xunta de Galicia Consellería de Medio Ambiente e Desenvolvemento Sostible; 2009.
  • Tóth G, Hermann T, Da Silva MR, Montanarella LJ. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int. 2016; 88: 299-309.
  • Commission Regulation. Commission Regulation (EU) 2023/465 of 3 March 2023 amending Regulation (EC) No 1881/2006 as regards maximum levels of arsenic in certain foods (Text with EEA relevance). Luxembourg: Commission Regulation; 2023.
  • Shrivastava A, Barla A, Singh S, Mandraha S, Bose S. Arsenic contamination in agricultural soils of Bengal deltaic region of West Bengal and its higher assimilation in monsoon rice. J Hazard Mater. 2017; 324: 526-534.
  • Filippi M, Doušová B, Machovič V. Mineralogical speciation of arsenic in soils above the Mokrsko-west gold deposit, Czech Republic. Geoderma. 2007; 139: 154-170.
  • González I, Galán E, Romero A. Assessing soil quality in areas affected by sulfide mining. Application to soils in the Iberian Pyrite Belt (SW Spain). Minerals. 2011; 1: 73-108.
  • Galán E, González I, Romero A, Aparicio P. A methodological approach to estimate the geogenic contribution in soils potentially polluted by trace elements. Application to a case study. J Soils Sediments. 2014; 14: 810-818.
  • Galán E, Romero Baena AJ, Aparicio P, González I. A methodological approach for the evaluation of soil pollution by potentially toxic trace elements. J Geochem Explor. 2019; 203: 96-107.
  • Romero Baena AJ, Barba Brioso C, Ross A, González I, Aparicio P. Mobility of potentially toxic elements in family garden soils of the Riotinto mining area. Appl Clay Sci. 2021; 203: 105999.
  • Martínez López S, Martínez Sánchez MJ, del Carmen Gómez Martínez M, Pérez Sirvent C. Arsenic zoning in a coastal area of the Mediterranean Sea as a base for management and recovery of areas contaminated by old mining activities. Appl Clay Sci. 2020; 199: 105881.
  • Galán Huertos E, González Díez I, Aparicio Fernández P, Romero Baena A. Informe privado. Estudio de la Afección de un Suelo Por Contaminación con Arsénico. Estudios, Trabajos y Dictámenes. Andalusia, Spain: Consejería de Medio Ambiente Universidad de Sevilla; 2009.
  • Fujita T, Taguchi R, Kubo H, Shibata E, Nakamura T. Immobilization of arsenic from novel synthesized scorodite-analysis on solubility and stability. Mater Trans. 2009; 50: 321-331.
  • Bennear L, Tarozzi A, Pfaff A, Balasubramanya S, Ahmed KM, Van Geen A. Impact of a randomized controlled trial in arsenic risk communication on household water-source choices in Bangladesh. J Environ Econ Manage. 2013; 65: 225-240.
  • Selinus O, Alloway BJ, Centeno JA, Finkeluar RB, Funge R, Lindh U, et al. Essential of Medical Geology Impacts of the Natural Environment on Public Health. Amsterdam, Netherlands: Elsevier; 2005.
  • Broecker WS, Peng TH. Tracers in the Sea. Palisades, NY, US: Eldigo Press; 1982.
  • Dang DH, Tessier E, Lenoble V, Durrieu G, Omanović D, Mullot JU, et al. Key parameters controlling arsenic dynamics in coastal sediments: An analytical and modeling approach. Mar Chem. 2014; 161: 34-46.
  • Mamindy Pajany Y, Hurel C, Géret F, Galgani F, Battaglia Brunet F, Marmier N, et al. Arsenic in marine sediments from French Mediterranean ports: Geochemical partitioning, bioavailability and ecotoxicology. Chemosphere. 2013; 90: 2730-2736.
  • Interministerial Commission on Marine Strategies. Guidelines for the characterization of draged material and its replacement in waters of the maritime terrest public domain. 2021. Available from: https://www.miteco.gob.es/content/dam/miteco/es/costas/temas/proteccion-medio-marino/220121_directrices_2021_final_tcm30-157006.pdf.
  • Sediment Management Annual Review Meeting (SMARM). Sediment Cleanup User’s Manual (SCUM). Washington State Department of Ecology; 2021; papers Publication No. 12-09-057. Available from: https://fortress.wa.gov/ecy/publications/SummaryPages/1209057.html.
  • Garbinski LD, Rosen BP, Chen J. Pathways of arsenic uptake and efflux. Environ Int. 2019; 126: 585-597.
  • Liu CJ, Peng YJ, Hu CY, He SX, Xiao SF, Li W, et al. Copper enhanced arsenic-accumulation in Ashyperaccumulator Pteris vittata by upregulating its gene expression for As uptake, translocation, and sequestration. J Hazard Mater. 2023; 460: 132484.
  • Su Q, He Y, Pan H, Liu H, Mehmood K, Tang Z, et al. Toxicity of inorganic arsenic to animals and its treatment strategies. Comp Biochem Physiol C Toxicol Pharmacol. 2023; 271: 109654.
  • Yi YJ, Zhang SH. The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River. Procedia Environ Sci. 2012; 13: 1699-1707.
  • Szubska M, Bełdowski J. Spatial distribution of arsenic in surface sediments of the southern Baltic Sea. Oceanologia. 2023; 65: 423-433.
  • Edmonds JS, Francesconi KA. Organoarsenic compounds in the marine environment. In: Organometallic Compounds in the Environment. Chichester, UK: John Wiley and Sons Ltd; 2003. pp. 195-222.
  • Zhang W, Guo Z, Zhou Y, Chen L, Zhang L. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish. Aquat Toxicol. 2016; 179: 65-71.
  • EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on arsenic in food. EFSA J. 2009; 7: 1351.
  • Xiong H, Tan QG, Zhang J, Wang WX, Yuan X, Zhang W, et al. Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish. Aquat Toxicol. 2021; 240: 105991.
  • Ye Z, Huang L, Zhao Q, Zhang W, Zhang L. Key genes for arsenobetaine synthesis in marine medaka (Oryzias melastigma) by transcriptomics. Aquat Toxicol. 2022; 253: 106349.
  • Zhang Z, Yang Z, Ding N, Xiong W, Zheng G, Lin Q, et al. Effects of temperature on the survival, feeding, and growth of pearl gentian grouper (female Epinephelus fuscoguttatus × male Epinephelus lanceolatus). Fish Sci. 2018; 84: 399-404.
  • Tao SSH, Bolger PM. Hazards and Diseases. In: Encyclopedia of Food Safety. Amsterdam, Netherlands: Academic Press; 2014.
  • European Food Safety Authority (EFSA). Scientific Opinion on Flavouring Group Evaluation 96 (FGE.96): Consideration of 88 flavouring substances considered by EFSA for which EU production volumes / anticipated production volumes have been submitted on request by DG SANCO. Addendum to FGE. 51, 52, 53, 54, 56, 58, 61, 62, 63, 64, 68, 69, 70, 71, 73, 76, 77, 79, 80, 83, 84, 85 and 87. [cited date 2023 Novermber 21]. Available from: https://www.efsa.europa.eu/en/efsajournal/pub/1924.
  • Hotchkiss AK, Ankley GT, Wilson VS, Hartig PC, Durhan EJ, Jensen KM, et al. Of mice and men (and mosquitofish): Antiandrogens and androgens in the environment. BioScience. 2008; 58: 1037-1050.
  • Celino Brady FT, Lerner DT, Seale AP. Experimental approaches for characterizing the endocrine-disrupting effects of environmental chemicals in fish. Front Endocrinol. 2021; 11: 619361.
  • Guardiola FA, Gónzalez Párraga MP, Cuesta A, Meseguer J, Martínez S, Martínez Sánchez MJ, et al. Immunotoxicological effects of inorganic arsenic on gilthead seabream (Sparus aurata L.). Aquat Toxicol. 2013; 134: 112-119.
  • Hamed SB, Guardiola F, Cuesta A, Martínez S, Martínez Sánchez MJ, Pérez Sirvent C, et al. Head kidney, liver and skin histopathology and gene expression in gilthead seabream (Sparus aurata L.) exposed to highly polluted marine sediments from Portman Bay (Spain). Chemosphere. 2017; 174: 563-571.
  • Pérez Sirvent C, Martínez Sánchez MJ, López SM, del Carmen Gómez Martínez M, Guardiola FA, Esteban MÁ. Influence of waterborne arsenic on nutritive and potentially harmful elements in gilthead seabream (Sparus aurata). Environ Monit Assess. 2016; 188: 620.
  • Cordero H, Morcillo P, Martínez S, Meseguer J, Pérez Sirvent C, Chaves Pozo E, et al. Inorganic arsenic causes apoptosis cell death and immunotoxicity on European sea bass (Dicentrarchus labrax). Mar Pollut Bull. 2018; 128: 324-332.
  • Hettick BE, Canas Carrell JE, French AD, Klein DM. Arsenic: A review of the element’s toxicity, plant interactions, and potential methods of remediation. J Agric Food Chem. 2015; 63: 7097-7107.
  • Pérez Sirvent C, Martínez Sánchez MJ, Martínez López S, Bech J, Bolan N. Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. J Geochem Explor. 2012; 123: 128-135.
  • Agudo Juan I. Transferencia de elementos traza potencialmente tóxicos en cultivos desarrollados en suelos con influencia minera. Murcia, Spain: University of Murcia; 2015.
  • Chen S, Zhang C, Qiu L, Li Q, Zhang K, Luo H. Biogeochemical transformation of sulfur and its effects on arsenic mobility in paddy fields polluted by acid mine drainage. Chemosphere. 2022; 293: 133605.
  • Mridha D, Gorain PC, Joardar M, Das A, Majumder S, De A, et al. Rice grain arsenic and nutritional content during post harvesting to cooking: A review on arsenic bioavailability and bioaccessibility in humans. Food Res Int. 2022; 154: 111042.
  • Signes Pastor AJ, Carey M, Carbonell Barrachina AA, Moreno Jiménez E, Green AJ, Meharg AA. Geographical variation in inorganic arsenic in paddy field samples and commercial rice from the Iberian Peninsula. Food Chem. 2016; 202: 356-363.
  • Zhai W, Ma Y, Yang S, Gustave W, Zhao T, Hashmi MZ, et al. Synchronous response of arsenic methylation and methanogenesis in paddy soils with rice straw amendment. J Hazard Mater. 2023; 445: 130380.
  • Kang B, Liu H, Chen G, Lin H, Chen S, Chen T. Novel covalent organic frameworks based electrospun composite nanofiber membranes as pipette-tip strong anion exchange sorbent for determination of inorganic arsenic in rice. Food Chem. 2023; 408: 135192.
  • Karagas MR, Punshon T, Davis M, Bulka CM, Slaughter F, Karalis D, et al. Rice intake and emerging concerns on arsenic in rice: A review of the human evidence and methodologic challenges. Curr Environ Health Rep. 2019; 6: 361-372.
  • Chen F, Luo Y, Li C, Wang J, Chen L, Zhong X, et al. Sub-chronic low-dose arsenic in rice exposure induces gut microbiome perturbations in mice. Ecotoxicol Environ Saf. 2021; 227: 112934.
  • Kumar A, Basu S, Kumari S, Shekhar S, Kumar G. Effective antioxidant defense prevents nitro-oxidative stress under arsenic toxicity: A study in rice genotypes of eastern Indo-Gangetic plains. Environ Exp Bot. 2022; 204: 105084.
  • Rokonuzzaman MD, Li WC, Wu C, Ye ZH. Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions. Environ Pollut. 2022; 308: 119712.
  • Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, et al. Fate of arsenic in living systems: Implications for sustainable and safe food chains. J Hazard Mater. 2021; 417: 126050.
  • Ali H, Khan E. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs-Concepts and implications for wildlife and human health. Hum Ecol Risk Assess. 2018; 25: 1353-1376.
  • Martínez López S, Martínez Sánchez MJ, Pérez Sirvent C, Bech J, del Carmen Gómez Martínez M, García Fernandez AJ. Screening of wild plants for use in the phytoremediation of mining-influenced soils containing arsenic in semiarid environments. J Soils Sediments. 2014; 14: 794-809.
  • Roggeman S, van den Brink N, Van Praet N, Blust R, Bervoets L. Metal exposure and accumulation patterns in free-range cows (Bos taurus) in a contaminated natural area: Influence of spatial and social behavior. Environ Pollut. 2013; 172: 186-199.
  • Martínez López S, Martínez Sánchez MJ, Pérez Sirvent C. Do old mining areas represent an environmental problem and health risk? A critical discussion through a particular case. Minerals. 2021; 11: 594.
  • Reeder RJ, Schoonen MA, Lanzirotti A. Metal speciation and its role in bioaccessibility and bioavailability. Rev Mineral Geochem. 2006; 64: 59-113.
  • Helser J, Vassilieva E, Cappuyns V. Environmental and human health risk assessment of sulfidic mine waste: Bioaccessibility, leaching and mineralogy. J Hazard Mater. 2022; 424: 127313.
  • Martínez Sánchez MJ, Martinez Lopez S, Martínez Martínez LB, Pérez Sirvent C. Importance of the oral arsenic bioaccessibility factor for characterising the risk associated with soil ingestion in a mining-influenced zone. J Environ Manage. 2013; 116: 10-17.
  • Liu Y, Ma J, Yan H, Ren Y, Wang B, Lin C, et al. Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China. Ecotoxicol Environ Saf. 2016; 126: 14-22.
  • Banerji T, Kalawapudi K, Salana S, Vijay R. Review of processes controlling arsenic retention and release in soils and sediments of Bengal basin and suitable iron based technologies for its removal. Groundw Sustain Dev. 2019; 8: 358-367.
  • Nava Ruiz C, Méndez Armenta M. Neurotoxic effects of heavy metals cadmium, lead arsenic and thallium. Arch De Neurocienc. 2011; 16: 140-147.
  • Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut. 2021; 289: 117940.
  • Li X, Liu X, Cao N, Fang S, Yu C. Adaptation mechanisms of arsenic metabolism genes and their host microorganisms in soils with different arsenic contamination levels around abandoned gold tailings. Environ Pollut. 2021; 291: 117994.
  • Wang HT, Liang ZZ, Ding J, Xue XM, Li G, Fu SL, et al. Arsenic bioaccumulation in the soil fauna alters its gut microbiome and microbial arsenic biotransformation capacity. J Hazard Mater. 2021; 417: 126018.
  • Wenzel WW. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 2009; 321: 385-408.
  • Yang X, Dai Z, Ge C, Yu H, Bolan N, Tsang DC, et al. Multiple-functionalized biochar affects rice yield and quality via regulating arsenic and lead redistribution and bacterial community structure in soils under different hydrological conditions. J Hazard Mater. 2023; 443: 130308.
  • Uhrynowski W, Debiec K, Sklodowska A, Drewniak L. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. Sci Total Environ. 2017; 598: 680-689.
  • Vallero DA. Chapter 8. Air pollution biogeochemistry. In: Air Pollution Calculations. Amsterdam, Netherlands: Elsevier; 2019. pp. 175-206.
  • Battistel M, Stolze L, Muniruzzaman M, Rolle M. Arsenic release and transport during oxidative dissolution of spatially-distributed sulfide minerals. J Hazard Mater. 2021; 409: 124651.
  • Xie X, Wang Y, Li J, Yu Q, Wu Y, Su C, et al. Effect of irrigation on Fe (III)-SO42- redox cycling and arsenic mobilization in shallow groundwater from the Datong basin, China: Evidence from hydrochemical monitoring and modeling. J Hydrol. 2015; 523: 128-138.
  • Guo H, Zhou Y, Jia Y, Tang X, Li X, Shen M, et al. Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao Basin, China: Evidence from multiple isotope approaches. Environ Sci Technol. 2016; 50: 12650-12659.
  • Kumar N, Noël V, Planer Friedrich B, Besold J, Lezama Pacheco J, Bargar JR, et al. Redox heterogeneities promote thioarsenate formation and release into groundwater from low arsenic sediments. Environ Sci Technol. 2020; 54: 3237-3244.
  • Wang Y, Li P, Guo Q, Jiang Z, Liu M. Environmental biogeochemistry of high arsenic geothermal fluids. Appl Geochem. 2018; 97: 81-92.
  • Zhang C, Liu T, Yang Z, Wu P, Zhang K, Chen S. Study on antimony and arsenic cycling, transformation and contrasting mobility in river-type reservoir. Appl Geochem. 2022; 136: 105132.
  • Sahrawat KL. Redox potential and pH as major drivers of fertility in submerged rice soils: A conceptual framework for management. Commun Soil Sci Plant Anal. 2015; 46: 1597-1606. doi: 10.1080/00103624.2015.1043451.
  • Burton ED, Johnston SG, Kocar BD. Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environ Sci Technol. 2014; 48: 13660-13667. doi: 10.1021/es503963k.
  • Glodowska M, Stopelli E, Straub D, Thi DV, Trang PT, Viet PH, et al. Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. J Hazard Mater. 2021; 407: 124398.
  • Woolson EA. Effects of fertiliser materials and combinations on the phytotoxicity, availability and content of arsenic in corn (maize). J Sci Food Agric. 1972; 23: 1477-1481.
  • Carbonell Barrachina ÁA, Wu X, Ramírez Gandolfo A, Norton GJ, Burló F, Deacon C, et al. Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Environ Pollut. 2012; 163: 77-83.
  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, et al. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int J Environ Res Public Health. 2018; 15: 59.
  • Khan I, Awan SA, Rizwan M, Ali S, Zhang X, Huang L. Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review. Environ Pollut. 2021; 286: 117389.
  • Venhauerova P, Drahota P, Strnad L, Matoušková Š. Effects of a point source of phosphorus on the arsenic mobility and transport in a small fluvial system. Environ Pollut. 2022; 315: 120477.
  • Taskin MB, Hanife AK, Selver KA, Taskin H, Saima K, Kadioglu YK, et al. Mitigating effect of various phosphorus sources on arsenic toxicity in anaerobic conditions for rice and aerobic conditions for sunflower and maize plants. Pedosphere. 2023. doi: 10.1016/j.pedsph.2023.07.002.
  • Park JH, Han YS, Ahn JS. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Res. 2016; 106: 295-303.
  • Feng Y, Dong S, Ma M, Hou Q, Zhao Z, Zhang W. The influence mechanism of hydrogeochemical environment and sulfur and nitrogen cycle on arsenic enrichment in groundwater: A case study of Hasuhai basin, China. Sci Total Environ. 2023; 858: 160013.
  • Li P, Jiang Z, Wang Y, Deng Y, Van Nostrand JD, Yuan T, et al. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. Water Res. 2017; 123: 268-276.
  • Smith RL, Kent DB, Repert DA, Böhlke JK. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer. Geochim Cosmochim Acta. 2017; 196: 102-120.
  • Gao ZP, Jia YF, Guo HM, Zhang D, Zhao B. Quantifying geochemical processes of arsenic mobility in groundwater from an inland basin using a reactive transport model. Water Resour Res. 2020; 56: e2019WR025492.
  • Doherty SJ, Tighe MK, Wilson SC. Evaluation of amendments to reduce arsenic and antimony leaching from co-contaminated soils. Chemosphere. 2017; 174: 208-217.
  • Arsic M, Teasdale PR, Welsh DT, Johnston SG, Burton ED, Hockmann K, et al. Diffusive gradients in thin films reveals differences in antimony and arsenic mobility in a contaminated wetland sediment during an oxic-anoxic transition. Environ Sci Technol. 2018; 52: 1118-1127.
  • Zhao J, Luo Q, Ding L, Fu R, Zhang F, Cui C. Valency distributions and geochemical fractions of arsenic and antimony in non-ferrous smelting soils with varying particle sizes. Ecotoxicol Environ Saf. 2022; 233: 113312.
  • Pérez Sirvent C, Martínez Sánchez MJ, Martínez López S, Hernández Córdoba M. Antimony distribution in soils and plants near an abandoned mining site. Microchem J. 2011; 97: 52-56.
  • Warnken J, Ohlsson R, Welsh DT, Teasdale PR, Chelsky A, Bennett WW. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland. Chemosphere. 2017; 180: 388-395.
  • Zhao L, Shangguan Y, Yao N, Sun Z, Ma J, Hou H. Soil migration of antimony and arsenic facilitated by colloids in lysimeter studies. Sci Total Environ. 2020; 728: 138874.
  • Wilson SC, Lockwood PV, Ashley PM, Tighe M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ Pollut. 2010; 158: 1169-1181.
  • Tighe M, Lockwood PV, Ashley PM, Murison RD, Wilson SC. The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system. Sci Total Environ. 2013; 463: 151-160.
  • Shahid M, Khalid S, Dumat C, Pierart A, Niazi NK. Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health. Appl Geochem. 2019; 106: 45-59.
  • Martínez López S, Martínez Sánchez MJ, Gómez Martínez MD, Pérez Sirvent C. Assessment of the risk associated with mining-derived arsenic inputs in a lagoon system. Environ Geochem Health. 2020; 42: 2439-2450.
  • Aftabtalab A, Rinklebe J, Shaheen SM, Niazi NK, Moreno Jiménez E, Schaller J, et al. Review on the interactions of arsenic, iron (oxy)(hydr) oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. Chemosphere. 2022; 286: 131790.
  • Veiga del Baño JM, Martínez López S, Pérez Sirvent C, Martínez Sánchez MJ, Andreo Martínez P. Optimisation of the chemical immobilisation by limestone filler of heavy metals and metalloids in contaminated soils via response surface methodology (RSM). Miner Eng. 2023; 201: 108211.