Efecto de las secreciones de organoides de endometrio humano sobre el cultivo in vitro de embriones bovinos

  1. Masegosa Domínguez, Alicia María 1
  2. Romero-Aguirregomezcorta, Jon 2
  3. Juan, Ángela 1
  4. Navarro-Serna, Sergio 3
  5. Pérez-García, Vicente 3
  6. Coy, Pilar 2
  1. 1 Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Internacional “Mare Nostrum”, Universidad de Murcia, Murcia, 30100, España.
  2. 2 1. Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Internacional “Mare Nostrum”, Universidad de Murcia, Murcia, 30100, España. 2. Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, España.
  3. 3 Centro de Investigación Príncipe Felipe, Valencia, España.
Revista:
Anales de veterinaria de Murcia

ISSN: 0213-5434 1989-1784

Año de publicación: 2023

Número: 37

Tipo: Artículo

DOI: 10.6018/ANALESVET.589641 DIALNET GOOGLE SCHOLAR lock_openDIGITUM editor

Otras publicaciones en: Anales de veterinaria de Murcia

Objetivos de desarrollo sostenible

Resumen

Over the last 50 years, the fertility of high-producing dairy cows has declined due to the intensity of genetic selection. To overcome this obstacle, assisted reproductive techniques have been used. However, in vitro embryo production is a relatively inefficient process, with maximum blastocyst yield rates of around 35%. To overcome this problem, it was hypothesised that by adding endometrial organoid secretions to the culture medium, embryos produced in vitro would be exposed to a more physiological environment and the yield of the technique would increase. For this purpose, bovine oocytes were collected from a local abattoir and matured in vitro, fertilised in vitro and cultured in vitro. The embryo culture medium was supplemented at 1% (v/v) with i) human endometrial organoid secretions (as bovine secretions are not available), ii) Boretto culture medium, and ii) matrigel drops with Boretto culture medium, as procedural controls. In addition, a control group without any supplementation was included. Embryo development was assessed at days 2, 7 and 8 of culture. The percentage of blastocysts at day 7 and day 8 post insemination was significantly higher (P<0.05) when Boretto culture medium was added. In addition, this treatment increased embryo development kinetics at day 7 post insemination, and blastocyst quality as assessed by total cell number, with 85.8% more than the control. Although human endometrial secretions have not given the expected result, it would be necessary to test whether bovine endometrial-specific organoid secretions, at different concentrations, could increase the yield of bovine embryo production in vitro.

Referencias bibliográficas

  • Aguila, L., Treulen, F., Therrien, J., Felmer, R., Valdivia, M., & Smith, L. C. (2020). Oocyte Selection for In vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals: An Open Access Journal from MDPI, 10(12), 2196. https://doi.org/10.3390/ani10122196
  • Arias, M. E., Vargas, T., Gallardo, V., Aguila, L., & Felmer, R. (2022). Simple and Efficient Chemically Defined In Vitro Maturation and Embryo Culture System for Bovine Embryos. Animals: an open access journal from MDPI, 12(21), 3057. https://doi.org/10.3390/ani12213057
  • Avilés, M., Gutiérrez-Adán, A., & Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Molecular human reproduction, 16(12), 896–906. https://doi.org/10.1093/molehr/gaq056
  • Bastos, G. M., Gonçalves, P. B., & Bordignon, V. (2008). Immunolocalization of the high-mobility group N2 protein and acetylated histone H3K14 in early developing parthenogenetic bovine embryos derived from oocytes of high and low developmental competence. Molecular reproduction and development, 75(2), 282–290. https://doi.org/10.1002/mrd.20798
  • Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghardt, R. C., & Wu, G. (2009). Comparative aspects of implantation. Reproduction (Cambridge, England), 138(2), 195–209. https://doi.org/10.1530/REP-09-0158
  • Block, J., Hansen, P. J., Loureiro, B., & Bonilla, L. (2011). Improving post-transfer survival of bovine embryos produced in vitro: Actions of insulin-like growth factor-1, colony stimulating factor-2 and hyaluronan. Theriogenology, 76(9), 1602-1609. https://doi.org/10.1016/j.theriogenology.2011.07.025
  • Bó, G. A., & Mapletoft, R. J. (2013). Evaluation and classification of bovine embryos. Animal Reproduction (AR), 10(3), 344-348.
  • Brito, L. F., Bedere, N., Douhard, F., Oliveira, H. R., Arnal, M., Peñagaricano, F., Schinckel, A. P., Baes, C. F., & Miglior, F. (2021). Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal: An International Journal of Animal Bioscience, 15 Suppl 1, 100292. https://doi.org/10.1016/j.animal.2021.100292
  • Britt, J. H., Cushman, R. A., Dechow, C. D., Dobson, H., Humblot, P., Hutjens, M. F., Jones, G. A., Mitloehner, F. M., Ruegg, P. L., Sheldon, I. M., & Stevenson, J. S. (2021). Review: Perspective on high-performing dairy cows and herds. Animal, 15, 100298. https://doi.org/10.1016/j.animal.2021.100298
  • Cajas, Y. N., Cañón-Beltrán, K., de la Blanca, M. G. M., Sánchez, J. M., Fernandez-Fuertes, B., González, E. M., & Rizos, D. (2021). Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reproduction, fertility, and development, 34(2), 117–138. https://doi.org/10.1071/RD21275
  • Chumduri, C., & Turco, M. Y. (2021). Organoids of the female reproductive tract. Journal of molecular medicine (Berlin, Germany), 99(4), 531–553. https://doi.org/10.1007/s00109-020-02028-0
  • Coy, P., Romar, R., & Romero-Aguirregomezcorta, J. (2022). The embryo culture media in the era of epigenetics: is it time to go back to nature? Animal reproduction, 19(1), e20210132. https://doi.org/10.1590/1984-3143-AR2021-0132
  • Cutullic, E., Delaby, L., Gallard, Y., & Disenhaus, C. (2012). Towards a better understanding of the respective effects of milk yield and body condition dynamics on reproduction in Holstein dairy cows. Animal, 6(3), 476-487.
  • Dieleman, S. J., Hendriksen, P. J., Viuff, D., Thomsen, P. D., Hyttel, P., Knijn, H. M., Wrenzycki, C., Kruip, T. A., Niemann, H., Gadella, B. M., Bevers, M. M., & Vos, P. L. (2002). Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology, 57(1), 5–20. https://doi.org/10.1016/s0093-691x(01)00655-0
  • Duranthon, V., Watson, A. J., & Lonergan, P. (2008). Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction (Cambridge, England), 135(2), 141–150. https://doi.org/10.1530/REP-07-0324
  • Ferré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P., & Ross, P. J. (2020). Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 14(5), 991-1004. https://doi.org/10.1017/S1751731119002775
  • Fitzgerald, H. C., Schust, D. J., & Spencer, T. E. (2021). In vitro models of the human endometrium: evolution and application for women's health. Biology of reproduction, 104(2), 282–293. https://doi.org/10.1093/biolre/ioaa183
  • Garcia, S. M., Marinho, L. S., Lunardelli, P. A., Seneda, M. M., & Meirelles, F. V. (2015). Developmental block and programmed cell death in Bos indicus embryos: effects of protein supplementation source and developmental kinetics. PloS one, 10(3), e0119463. https://doi.org/10.1371/journal.pone.0119463
  • Gómez, E., Correia-Álvarez, E., Caamaño, J. N., Díez, C., Carrocera, S., Peynot, N., Martín, D., Giraud-Delville, C., Duranthon, V., Sandra, O., & Muñoz, M. (2014). Hepatoma-derived growth factor: from the bovine uterus to the in vitro embryo culture. Reproduction (Cambridge, England), 148(4), 353–365. https://doi.org/10.1530/REP-14-0304
  • Gopichandran, N., & Leese, H. J. (2006). The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction (Cambridge, England), 131(2), 269–277. https://doi.org/10.1530/rep.1.00677
  • Hamdi, M., Lopera-Vasquez, R., Maillo, V., Sanchez-Calabuig, M. J., Núnez, C., Gutierrez-Adan, A., & Rizos, D. (2018). Bovine oviductal and uterine fluid support in vitro embryo development. Reproduction, fertility, and development, 30(7), 935–945. https://doi.org/10.1071/RD17286
  • Hansen, P. J., & Block, J. (2004). Towards an embryocentric world: the current and potential uses of embryo technologies in dairy production. Reproduction, fertility, and development, 16(1-2), 1–14. https://doi.org/10.10371/RD03073
  • Hoshi, H. (2003). In vitro production of bovine embryos and their application for embryo transfer. Theriogenology, 59(2), 675-685. https://doi.org/10.1016/s0093-691x(02)01247-5
  • Itoh N. (2016). FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease. Cytokine & growth factor reviews, 28, 63–69. https://doi.org/10.1016/j.cytogfr.2015.10.001
  • Itze-Mayrhofer, C., & Brem, G. (2020). Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. Journal of Proteomics, 225, 103884. https://doi.org/10.1016/j.jprot.2020.103884
  • Kepkova, K. V., Vodicka, P., Toralova, T., Lopatarova, M., Cech, S., Dolezel, R., Havlicek, V., Besenfelder, U., Kuzmany, A., Sirard, M.-A., Laurincik, J., & Kanka, J. (2011). Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition. Theriogenology, 75(9), 1582-1595. https://doi.org/10.1016/j.theriogenology.2010.12.019
  • Kobayashi, A., & Behringer, R. R. (2003). Developmental genetics of the female reproductive tract in mammals. Nature reviews. Genetics, 4(12), 969–980. https://doi.org/10.1038/nrg1225
  • Li, Y., Donnelly, C. G., & Rivera, R. M. (2019). Overgrowth Syndrome. The Veterinary Clinics of North America. Food Animal Practice, 35(2), 265-276. https://doi.org/10.1016/j.cvfa.2019.02.007
  • Lonergan, P., & Fair, T. (2008). In vitro-produced bovine embryos—Dealing with the warts. Theriogenology, 69(1), 17-22. https://doi.org/10.1016/j.theriogenology.2007.09.007
  • Lonergan, P., & Fair, T. (2016). Maturation of Oocytes in vitro. Annual Review of Animal Biosciences, 4(1), 255-268. https://doi.org/10.1146/annurev-animal-022114-110822
  • Lonergan, P., Fair, T., Forde, N., & Rizos, D. (2016). Embryo development in dairy cattle. Theriogenology, 86(1), 270-277. https://doi.org/10.1016/j.theriogenology.2016.04.040
  • Lopera-Vasquez, R., Hamdi, M., Maillo, V., Lloreda, V., Coy, P., Gutierrez-Adan, A., Bermejo-Alvarez, P., & Rizos, D. (2017). Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro. Reproduction, fertility, and development, 29(3), 621–629. https://doi.org/10.1071/RD15238
  • Lopes, J. S., Canha-Gouveia, A., París-Oller, E., & Coy, P. (2019). Supplementation of bovine follicular fluid during in vitro maturation increases oocyte cumulus expansion, blastocyst developmental kinetics, and blastocyst cell number. Theriogenology, 126, 222-229. https://doi.org/10.1016/j.theriogenology.2018.12.010
  • Massimiani, M., Lacconi, V., La Civita, F., Ticconi, C., Rago, R., & Campagnolo, L. (2019). Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. International journal of molecular sciences, 21(1), 23. https://doi.org/10.3390/ijms21010023
  • Mesalam, A., Lee, K. L., Khan, I., Chowdhury, M. M. R., Zhang, S., Song, S. H., Joo, M. D., Lee, J. H., Jin, J. I., & Kong, I. K. (2019). A combination of bovine serum albumin with insulin-transferrin-sodium selenite and/or epidermal growth factor as alternatives to fetal bovine serum in culture medium improves bovine embryo quality and trophoblast invasion by induction of matrix metalloproteinases. Reproduction, fertility, and development, 31(2), 333–346. https://doi.org/10.1071/RD18162
  • Ministerio de Agricultura, Pesca y Alimentación. (2023). Ganado bovino. Plataforma de conocimiento para el medio rural y pesquero. Observatorio de Tecnologías Probadas. Recuperado de https://www.mapa.gob.es/es/ministerio/servicios/informacion/plataforma-de-conocimiento-para-el-medio-rural-y-pesquero/observatorio-de-tecnologias-probadas/sistemas-prodnut-animal/ganado-bovino.aspx
  • Nagai T. (2001). The improvement of in vitro maturation systems for bovine and porcine oocytes. Theriogenology, 55(6), 1291–1301. https://doi.org/10.1016/s0093-691x(01)00483-6
  • Parrish, J. J., Susko-Parrish, J., Winer, M. A., & First, N. L. (1988). Capacitation of bovine sperm by heparin. Biology of Reproduction, 38(5), 1171-1180. https://doi.org/10.1095/biolreprod38.5.1171
  • Pryce, J. E., Royal, M. D., Garnsworthy, P. C., & Mao, I. L. (2004). Fertility in the high-producing dairy cow. Livestock Production Science, 86(1), 125-135. https://doi.org/10.1016/S0301-6226(03)00145-3
  • Rossi, G., Manfrin, A., & Lutolf, M. P. (2018). Progress and potential in organoid research. Nature reviews. Genetics, 19(11), 671–687. https://doi.org/10.1038/s41576-018-0051-9
  • Shiraga, M., Takahashi, S., Miyake, T., Takeuchi, S., & Fukamachi, H. (1997). Insulin-Like Growth Factor-I Stimulates Proliferation of Mouse Uterine Epithelial Cells in Primary Culture. Proceedings of the Society for Experimental Biology and Medicine, 215(4):412-417. https://doi:10.3181/00379727-215-44152
  • Sirard, M. A. (2018). 40 years of bovine IVF in the new genomic selection context. Reproduction (Cambridge, England), 156(1), R1–R7. https://doi.org/10.1530/REP-18-0008
  • Telfer, E. E., Sakaguchi, K., Clarkson, Y. L., McLaughlin, M., Telfer, E. E., Sakaguchi, K., Clarkson, Y. L., & McLaughlin, M. (2020). In vitro growth of immature bovine follicles and oocytes. Reproduction, Fertility and Development, 32(2), 1-6. https://doi.org/10.1071/RD19270
  • Van Langendonckt, A., Donnay, I., Schuurbiers, N., Auquier, P., Carolan, C., Massip, A., & Dessy, F. (1997). Effects of supplementation with fetal calf serum on development of bovine embryos in synthetic oviduct fluid medium. Journal of Reproduction and Fertility, 109(1), 87-93. https://doi.org/10.1530/jrf.0.1090087
  • van Soom, A., Ysebaert, M. T., & de Kruif, A. (1997). Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Molecular reproduction and development, 47(1), 47–56. https://doi.org/10.1002/(SICI)1098-2795(199705)47:1<47:AID-MRD7>3.0.CO;2-Q
  • Vh, D., S, W., & Aw, T.-R. (2016). Improvements to In vitro Culture Media for Use in Bovine IVF. Journal of Veterinary Science and Animal Husbandry, 4(2). https://doi.org/10.15744/2348-9790.4.205
  • Viana, J. (2022). 2021 Statistics of embryo production and transfer in domestic farm animals. Embryo Technology Newsletter, 40(4), 22-40.
  • Wang, Z., Song, Y., Sun, S., Zhao, C., Fu, S., Xia, C., & Bai, Y. (2022). Metabolite Comparison between Serum and Follicular Fluid of Dairy Cows with Inactive Ovaries Postpartum. Animals: an open access journal from MDPI, 12(3), 285.
  • Wells A. (1999). EGF receptor. The international journal of biochemistry & cell biology, 31(6), 637–643. https://doi.org/10.1016/s1357-2725(99)00015-1
  • Wrenzycki, C. (2018). Gene expression analysis and in vitro production procedures for bovine preimplantation embryos: Past highlights, present concepts and future prospects. Reproduction in Domestic Animals = Zuchthygiene, 53 Suppl 2, 14-19. https://doi.org/10.1111/rda.13260
  • Young, L. E., Sinclair, K. D., & Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Reviews of Reproduction, 3(3), 155-163. https://doi.org/10.1530/ror.0.0030155