Revisión sistemática de la determinación de ditiocarbamatos en plantas del género brassica
- Picón-Martínez, Alba 1
- Oliva, José 1
- Veiga-del-Baño, José Manuel 1
- Andreo-Martínez, Pedro 1
- 1 Departamento de Química Agrícola, Geología y Edafología, Universidad de Murcia
ISSN: 0213-5434, 1989-1784
Datum der Publikation: 2023
Nummer: 37
Art: Artikel
Andere Publikationen in: Anales de veterinaria de Murcia
Zusammenfassung
Dithiocarbamates (DTCs) are a group of organosulfur compounds used mainly as pesticides to control fungal diseases in agricultural crops. In addition to this, DTCs are used as vulcanization additives in rubber manufacturing, additives in lubricants or antioxidants, among others. DTCs are classified according to their organosulfur skeleton, since the main difference between them is due to the elements present in their sulfur carbon skeleton, which can be Zn, Mn, Fe, Na or Se. Abuse in the use of DTCs can pose a risk to consumers, when the concentration in food is high. It can also be harmful to agricultural workers, either by inhalation or dermal exposure. This work uses the PRISMA methodology to perform a systematic review on the determination of DTCs residues in Brassica plants where 8 articles have been found, in which different methods and analytical techni- ques are used for the determination of DTCs. The most common analytical methods are UV-visible spectrophotometry, inductively coupled plasma mass spectrometry, liquid chromatography or gas chromatography. Some of the methods focus on determining the fungicide ethylene-bis-dithiocarbamate. Others focus on the determination of pencycurum, a fungicide of the phenylurea group, used for the treatment of fungi. Methods based on the extraction of the ammonium Se-pyr- rolidine-dithiocarbamate complex have also been found. The presence of DTCs is expressed as CS2. The main drawback is due to the fact that plants of the Brassica genus present sulfur in their structure and can generate phytogenic CS2 and generate errors in the quantification, giving rise to false positives. In addition to this, another drawback is the inability to differentiate between the different DTCs.
Bibliographische Referenzen
- Ahmad, N., Guo, L., Mandarakas, P., Farah, V., Appleby, S., & Gibson, T. (1996). Headspace gas–liquid chromatographic determination of dithiocarbamate residues in fruits and vegetables with confirmation by conversion to ethylenethiourea. Journal of AOAC International, 79(6), 1417-1422.
- Chen, J., Fu, F., Wu, S., Wang, J., & Wang, Z. (2017). Simultaneous detection of zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate in cabbage leaves by capillary electrophoresis with inductively coupled plasma mass spectrometry. Journal of separation science, 40(19), 3898-3904.
- Crnogorac, G., & Schwack, W. (2009). Residue analysis of dithiocarbamate fungicides. TrAC Trends in Analytical Chemistry, 28(1), 40-50.
- Fanjul-Bolado, P., Fogel, R., Limson, J., Purcarea, C., & Vasilescu, A. (2020). Advances in the Detection of Dithiocarbamate Fungicides: Opportunities for Biosensors. Biosensors, 11(1), 12.
- van Boxtel, A. L., Kamstra, J. H., Fluitsma, D. M., & Legler, J. (2010). Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity. Toxicology and applied pharmacology, 244(2), 156-161.
- Grijalba, A. C., Martinis, E. M., & Wuilloud, R. G. (2017). Inorganic selenium speciation analysis in Allium and Brassica vegetables by ionic liquid assisted liquid-liquid microextraction with multivariate optimization. Food chemistry, 219, 102-108.
- Heuerman, R. F. (1957). Determination of Residue Quantities of Dialkyl Dithiocarbamates by Amine Evolution. Journal of Association of Official Agricultural Chemists, 40(1), 264-270.
- Kailasa, S. K., Nguyen, T. P., Baek, S. H., Rafique, R., & Park, T. J. (2019). Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples. Talanta, 205, 120087.
- Kaur, M., Kaur, V., Malik, A. K., Verma, N., Singh, B., & Rao, A. L. J. (2009). Development of a derivative spectrophotometric method for the determination of fungicide zinc ethylenebisdithiocarbamate using sodium molybdate. Journal of the Brazilian Chemical Society, 20(5), 993-998.
- Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., ... & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews, 4(1), 1-9.
- Perz, R. C., van Lishaut, H., & Schwack, W. (2000). CS2 blinds in Brassica crops: false positive results in the dithiocarbamate residue analysis by the acid digestion method. Journal of Agricultural and Food Chemistry, 48(3), 792-796.
- Prudente, I. R. G., Cruz, C. L., de Carvalho Nascimento, L., Kaiser, C. C., & Guimarães, A. G. (2018). Evidence of risks of renal function reduction due to occupational exposure to agrochemicals: A systematic review. Environmental Toxicology and Pharmacology, 63, 21-28.
- Schmidt, B., Christensen, H. B., Petersen, A., Sloth, J. J., & Poulsen, M. E. (2013). Method validation and analysis of nine dithiocarbamates in fruits and vegetables by LC-MS/MS Food Additives & Contaminants: Part A, 30(7), 1287-1298.
- Tonelli, M., Hackam, D., & Garg, A. X. (2008). Primer on systematic review and meta-analysis. Clinical Epidemiology, 217-233.
- UNE-EN 12396-2:2000. Alimentos no grasos. Determinación de residuos de ditiocarbamato y de disulfuro de tiuram. Parte 2: Método por cromatografía de gases. Disponible en: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0023222. Consultado el 15/03/2022.
- Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina clínica, 135(11), 507-511.