Efecto de la temperatura sobre la microbiota del insecto comestible acheta domesticus

  1. Beltran Soro, Leonardo 1
  2. Bravo Peña, Yolanda 2
  3. Galián Albadalejo, Jose 3
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  2. 2 Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Mur- cia
  3. 3 Departamento de Zoología y Antropología Física. ArthropoTech S.L.
Aldizkaria:
Anales de veterinaria de Murcia

ISSN: 0213-5434 1989-1784

Argitalpen urtea: 2023

Zenbakia: 37

Mota: Artikulua

DOI: 10.6018/ANALESVET.546891 DIALNET GOOGLE SCHOLAR lock_openDIGITUM editor

Beste argitalpen batzuk: Anales de veterinaria de Murcia

Laburpena

The insect microbiota performs essential functions in their metabolism, contributing to the proper functioning of the immune system and favoring digestion. The cricket species Acheta domesticus has recently been authorized for human consumption. The massive production of this species implies large energy costs in the breeding area, so variations in room temperature could mean significant savings in production costs. This study aims to analyze the influence of temperature on the composition of the intestinal microbiota, considering the hypothesis that changes in temperature affect the microbiota of ectothermic insects. For this, two groups of crickets were selected in separate boxes and subjected to temperatures of 20 ºC and 30 ºC, respectively. Subsequently, their intestines were removed and their bacterial populations were quantified using metagenomic techniques.  The results obtained showed that the most abundant taxa hardly varied in all samples. Abundance relatives of Bacteria belonging to the phylum Firmicutes was 31.5 ± 2.06%, in Bacteroidetes 24.25 ± 3.89% and in Proteobacteria 44 ± 4.85%. The only sample showing difference was that reared at 30ºC, in which 0.8% of Actinobacteria was detected. In conclusion, it could be said that the rearing temperature of cricket farms has slightly influenced the composition of the intestinal microbiota, therefore the initial hypothesis is accepted. Incidentally, high mortality has been observed in the sample kept at 30ºC, suggesting that this factor should be carefully considered in massive rearing of crickets.

Erreferentzia bibliografikoak

  • AECOSAN. Informe del Comité Científico de la Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN) en relación a los riesgos microbiológicos y alergénicos asociados al consumo de insectos (AECOSAN-2018-001). https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/informes_comite/CONSUMO_INSECTOS.pdf
  • Binda, C., Lopetuso, L. R., Rizzatti, G., Gibiino, G., Cennamo, V., & Gasbarrini, A. (2018). Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease, 50(5), 421–428. https://doi.org/10.1016/j.dld.2018.02.012
  • Bermingham, E. N., Maclean, P., Thomas, D. G., Cave, N. J., & Young, W. (2017). Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ, 5, e3019. https://doi.org/10.7717/peerj.3019
  • Engel, P., & Moran, N. A. (2013). The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025
  • Ferguson, L. V., Dhakal, P., Lebenzon, J. E., Heinrichs, D. E., Bucking, C., & Sinclair, B. J. (2018). Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Functional Ecology, 32(10), 2357–2368. https://doi.org/10.1111/1365-2435.13153
  • Fernandez-Cassi, X., Söderqvist, K., Bakeeva, A., Vaga, M., Dicksved, J., Vagsholm, I., Jansson, A., & Boqvist, S. (2020). Microbial communities and food safety aspects of crickets (Acheta domesticus) reared under controlled conditions. Journal of Insects as Food and Feed, 6(4), 429–440. https://doi.org/10.3920/jiff2019.0048
  • Guevara Larrea, B. L. (2017, noviembre). Aislamiento y caracterización morfológica de cepas nativas de actinomicetos y su actividad antagónica contra Ralstonia solanacearum, Escherichia coli, Staphylococcus aureus y Salmonella sp. Escuela Agrícola Panamericana, Zamorano Honduras. https://bdigital.zamorano.edu/bitstream/11036/5968/1/IAD-2017-015.pdf
  • Ismail, N. A., Ragab, S. H., ElBaky, A. A., Shoeib, A. R., Alhosary, Y., & Fekry, D. (2011). Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Archives of Medical Science, 3, 501–507. https://doi.org/10.5114/aoms.2011.23418
  • Jung, J., Heo, A., Park, Y. W., Kim, Y. J., Koh, H., & Park, W. (2014). Gut microbiota of Tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016
  • Jongema, Y. (2017). List of edible insects of the world. Wageningen University &Research, Wageningen, the Netherlands.
  • Kim, Y. H., & Milner, J. A. (2007b). Dietary Modulation of Colon Cancer Risk. Journal of Nutrition, 137(11), 2576S-2579S.
  • Méndez-Salazar, E. O., Ortiz-López, M. G., Granados-Silvestre, M. D. L. N., Palacios-González, B., & Menjivar, M. (2018). Corrigendum: Altered gut microbiota and compositional changes in Firmicutes and Proteobacteria in Mexican undernourished and obese children. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02693
  • Meticulous Market Research Pvt. Ltd. (2019). Edible Insects Market Worth $7.96 Billion by 2030- Exclusive Report by Meticulous Research®. GlobeNewswire News Room.
  • Moeller, A. H., Ivey, K., Cornwall, M. B., Herr, K., Rede, J., Taylor, E. N., & Gunderson, A. R. (2020). The lizard gut microbiome changes with temperature and is associated with heat tolerance. Applied and Environmental Microbiology, 86(17). https://doi.org/10.1128/aem.01181-20
  • Mukhopadhya, I., Hansen, R., El-Omar, E. M., & Hold, G. L. (2012). IBD—what role do Proteobacteria play? Nature Reviews Gastroenterology & Hepatology, 9(4), 219–230. https://doi.org/10.1038/nrgastro.2012.14
  • Ng, S. H., Stat, M., Bunce, M., & Simmons, L. W. (2018). The influence of diet and environment on the gut microbial community of field crickets. Ecology and Evolution, 8(9), 4704–4720. https://doi.org/10.1002/ece3.3977
  • Ranjani, A., Dhanasekaran, D., & Gopinath, P. M. (2016). An Introduction to Actinobacteria. Actinobacteria - Basics and Biotechnological Applications. Published. https://doi.org/10.5772/62329
  • Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., & Gasbarrini, A. (2017). Proteobacteria: a common factor in human diseases. BioMed Research International, 2017, 1–7. https://doi.org/10.1155/2017/9351507
  • Santo Domingo, J. W., Kaufman, M. G., Klug, M. J., Holben, W. E., Harris, D., & Tiedje, J. M. (1998). Influence of diet on the structure and function of the bacterial hindgut community of crickets. Molecular Ecology, 7(6), 761–767. https://doi.org/10.1046/j.1365-294x.1998.00390.x
  • Shin, N. R., Whon, T. W., & Bae, J. W. (2015). Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 33(9), 496–503. https://doi.org/10.1016/j.tibtech.2015.06.011
  • Smith, C. J., Rocha, E. R., and Paster, B. J. (2006). The medically important Bacteroides spp. in health and disease.Prokaryotes 7, 381–427.
  • Tinker, K. A., & Ottesen, E. A. (2016). The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Applied and Environmental Microbiology, 82(22), 6603–6610. https://doi.org/10.1128/aem.01837-16
  • Unión Europea. Reglamento de Ejecución (UE) 2022/188 de la Comisión de 10 de febrero de 2022 por el que se autoriza la comercialización de las formas congelada, desecada y en polvo de Acheta domesticus como nuevo alimento con arreglo al Reglamento (UE) 2015/2283 del Parlamento Europeo y del Consejo y se modifica el Reglamento de Ejecución (UE) 2017/2470 de la Comisión. «DOUE» núm. 30, de 11 de febrero de 2022, páginas 109 a 114
  • Wynants, E. (2019). Microbiological dynamics and safety risks during rearing of insects for food and feed. PhD thesis.