Recursos hídricos actuales y futuros en Chile y su disponibilidad para la vegetación mediterránea

  1. Lozano-Parra, Javier 1
  2. García-Marín, Ramón 2
  3. Pulido, Manuel 3
  4. Ruiz-Álvarez, Víctor 4
  1. 1 Instituto de Geografía, Pontificia Universidad Católica de Chile
  2. 2 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  3. 3 Grupo de Investigación GeoAmbiental, Universidad de Extremadura
  4. 4 Departamento de Geografía, Universidad de Murcia
Zeitschrift:
Physis Terrae - Revista Ibero-Afro-Americana de Geografia Física e Ambiente

ISSN: 2184-626X

Datum der Publikation: 2020

Ausgabe: 2

Nummer: 1

Seiten: 87-100

Art: Artikel

DOI: 10.21814/PHYSISTERRAE.1889 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Physis Terrae - Revista Ibero-Afro-Americana de Geografia Física e Ambiente

Ziele für nachhaltige Entwicklung

Zusammenfassung

Las regiones áridas y semiáridas cubren actualmente más del 45% de la superficie terrestre. El territorio central de Chile se encuentra entre estas zonas y constituye un espacio que debe ser conservado por su importancia económica, ecológica y climática. Sin embargo, la creciente presión sobre el agua y las modificaciones climáticas hacen necesario cuantificar la cantidad de recursos hídricos, tanto actuales como futuros, distribuidos por el territorio chileno y establecer qué biomas podrían verse más afectados por las variaciones hídricas. Este estudio cuantifica el balance hídrico actual y futuro de forma distribuida para todo el territorio chileno y establece qué formaciones vegetales mediterráneas serán las más afectadas por las variaciones de los recursos hídricos. Los resultados demuestran que la zona central, lugar donde se concentra la mayor parte de la población chilena, constituiría uno de los territorios más sensibles a la escasez hídrica, con reducciones de los recursos que alcanzan un promedio de 75 mm año-1 para el 80% de los espacios mediterráneos. El descenso de los recursos hídricos podría comprometer el funcionamiento ambiental y económico de los espacios mediterráneos de Chile.

Bibliographische Referenzen

  • Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Osch, F. P. V., Rietkerk, M., et al. (2011). Ecohydrological advances and applications in plant–water relations research: a review. Journal of Plant Ecology, 4, 3-22. https://doi.org/10.1093/jpe/rtr005
  • Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., et al. (2019). Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2019.1620507
  • Eagleson, P. (2002). Ecohydrology: Darwinian expression of vegetation form and function. UK: Cambrige University Press.
  • FAO (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps (Vol. 106). Rome: FAO. 106.
  • Fick, S., Hijmans, R. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086
  • García Marín, R., Schnabel, S., Pulido Fernández, M., Lozano-Parra, F. J., Jariego García, Á., Lagar Timón, D. (2010). Riesgo de sequía y gestión de recursos hídricos. In J. Mora Aliseda, F. Dos Reis Condesso, & B. De Sao Pedro (Eds.), Gestión sostenible de los recursos hídricos (pp. 445-473). Lisboa, Portugal.
  • Hearne, R., Donoso, G. (2014). Water markets in Chile: Are they meeting needs? In W. Easter & Q. Huang (Eds.), Water markets for the 21st Century. What have we learned? Global Issues in Water Policy (Vol. 11, pp. 103-126). USA: Springer.
  • IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.
  • Larraín, S., Poo, P. (2010). Conflictos por el Agua en Chile. Entre los derechos humanos y las reglas del mercado. Chile: Embajada de Holanda y Fundación Heinrich Böll.
  • Lewis, D., Singer, M. J., Dahlgren, R. A., Tate, K. W. (2000). Hydrology in a California oak woodland watershed: a 17-year study. Journal of Hydrology, 240, 106-117. https://doi.org/10.1016/S0022-1694(00)00337-1
  • Lozano-Parra, J. (2015). Dinámica del agua edáfica en dehesas y su relación con el clima y la vegetación. Boletín de la Asociación de Geográfos Españoles, 69, 625-629.
  • Lozano-Parra, J., Maneta, M., Schnabel, S. (2014). Climate and topographic controls on simulated pasture production in a semiarid Mediterranean watershed with scattered tree cover. Hydrology and Earth System Sciences, 18, 1439-1456. https://doi.org/10.5194/hess-18-1439-2014
  • Lozano-Parra, J., Schnabel, S. (2015). Respuesta de la vegetación herbácea a las variaciones hídricas del suelo. In S. Martínez Pérez & A. Sastre Merlín (Eds.), Estudios de la Zona No Saturada (Vol. XII, pp. 77-84). Alcalá de Henares: Universidad de Alcalá de Henares.
  • Lozano-Parra, J., Schnabel, S., Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. Journal of Hydrology, 529, 951-961. https://doi.org/10.1016/j.jhydrol.2015.09.018
  • Lozano-Parra, J., Van Schaik, L., Schnabel, S., Gómez-Gutiérrez, Á. (2016). Soil moisture dynamics at high temporal resolution in a mediterranean watershed with scattered tree cover. Hydrological Processes, 30, 1155-1170. https://doi.org/10.1002/hyp.10694
  • Maneta, M. P., Soulsby, C., Kuppel, S., Tetzlaff, D. (2018). Conceptualizing catchment storage dynamics and nonlinearities. Hydrological Processes, Invited Commentary, 1-5. https://doi.org/10.1002/hyp.13262
  • McColl, K., Alemohammad, S., Akbar, R., Konings, A., Yueh, S., Entekhabi, D. (2017). The global distribution and dynamics of surface soil moisture. Nature Geoscience. https://doi.org/10.1038/ngeo2868
  • Pliscoff, P., Luebert, F. (2006). Sinopsis Bioclimatica y Vegetacional de Chile. Editorial Universitaria.
  • Rivera, D., Godoy-Faúndez, A., Lillo, M., Alvez, A., Delgado, V., Gonzalo-Martín, C., et al. (2016). Legal disputes as a proxy for regional conflicts over water rights in Chile. Journal of Hydrology, 535, 36-45. https://doi.org/10.1016/j.jhydrol.2016.01.057
  • Rodell, M., Famiglietti, J., Wiese, D., Reager, J., Beaudoing, H., Landerer, F., et al. (2018). Emerging trends in global freshwater availability. Nature, 557, 651–659. https://doi.org/10.1038/s41586-018-0123-1
  • Rodríguez-Iturbe, I. (2000). Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research, 36, 3-9. https://doi.org/10.1029/1999WR900210
  • Rodríguez-Iturbe, I., D'Odorico, P., Laio, F., Ridolfi, L., Tamea, S. (2007). Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resources Research, 43, 1-5. https://doi.org/10.1029/2007WR006073
  • Rodríguez-Iturbe, I., Porporato, A. (2004). Ecohydrology of Water-Controlled Ecosystems. Cambrige, UK: Cambrige University Press.
  • Rubel, F., Kottek, M. (2010). Observed and projected climate shifts 1901–2100 depicted by world maps of the Koppen-Geiger climate classification. Meteorologische Zeitschrift, 19, 135-141. https://doi.org/10.1127/0941-2948/2010/0430
  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596. https://doi.org/10.1038/35098000
  • Scheffer, M., Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648-656. https://doi.org/10.1016/j.tree.2003.09.002
  • Seneviratne, S., Corti, T., Davin, E., Hirschi, M., Jaeger, E., Lehner, I., et al. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125-161. https://doi.org/10.1016/j.earscirev.2010.02.004
  • Turc, L. (1961). Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron., 12, 13-49.
  • Wahba, G. (1990). Spline Models for Observational Data. Paper presented at the CBMS-NSF Regional Conference Series in Applied Mathematics, University of Wisconsin, Madison, Wisconsin.
  • World Bank. (2011). Chile: Diagnóstico de la gestión de los recursos hídricos. In W. Bank (Ed.), Banco Mundial (Vol. N 63392, pp. 88).