Riesgo operacional en la banca trasnacionalun enfoque bayesiano

  1. Martínez Sánchez, José Francisco
  2. Venegas Martínez, Francisco
Aldizkaria:
Ensayos Revista de Economía

ISSN: 2448-8402

Argitalpen urtea: 2013

Zenbakien izenburua: MAY 2013

Alea: 32

Zenbakia: 1

Orrialdeak: 31-72

Mota: Artikulua

DOI: 10.29105/ENSAYOS32.1-2 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Ensayos Revista de Economía

Laburpena

Este trabajo identifica y cuantifica a través de un modelo de red bayesiana (RB) los diversos factores de riesgo operacional (RO) asociados con las líneas de negocio de bancos trasnacionales. El modelo de RB es calibrado mediante datos de eventos que se presentaron en las distintas líneas de negocio, de dichos bancos, durante 2006-2009. A diferencia de los métodos clásicos, la calibración del modelo de RB incluye fuentes de información tanto objetivas como subjetivas, lo cual permite capturar de manera adecuada la interrelación (causa-efecto) entre los diferentes factores de riesgo, lo cual potencializa su utilidad como se muestra en el análisis comparativo que se realiza entre los enfoques RB y clásico. Clasificación JEL: D81, C11, C15.

Erreferentzia bibliografikoak

  • Aquaro, V., Bardoscia, M., Belloti, R., Consiglio, A., De Carlo, F. and Ferri, G. (2009). “A Bayesian Networks Approach to Operational Risk”. Disponible en: https://www.researchgate.net/home.Home.html?ref=home
  • Alexander, C. (2002). “Operational Risk Measurement: Advanced Approaches”. ISMA Centre, University of Reading, UK. Disponible en: http://www.globalriskguard.com/virtual-library/operational-risk/
  • Altman, E. I. (1968). "Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”. The Journal of Finance, 23(4), 589-609. DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
  • Artzner, P., Delbaen, F., Eber, J. and Heath, D. (1998). “Coherent Measures of Risk”. Mathematical Finance, 9(3), 203-228. DOI: https://doi.org/10.1111/1467-9965.00068
  • Basilea II (2001a). “Consultative document. Operational Risk”. Disponible en: http://www.bis.org/publ/bcbsca03.pdf
  • ________ (2001b). “Working Paper on the Regulatory Treatment of Operational Risk”. Disponible en: http://www.bis.org/publ/bcbs_wp8.pdf
  • Basilea III (2010) "Marco internacional para la medición, normalización y seguimiento del riesgo de liquidez". Disponible en: http://www.bis.org/publ/bcbs188_es.pdf
  • Cowell, R. (1999). Introduction to inference for bayesian networks. En Jordan, M.I. (Ed), Learning in graphical models (9-26). Cambridge, MA, USA: MIT Press. DOI: https://doi.org/10.1007/978-94-011-5014-9_1
  • Degen, M., Embrechts, P. and Lambrigger, D. (2007). “The Quantitative Modeling of Operational Risk: Between g-and-h and EVT”. ASTIN Bulletin, 37(2), 265-291. DOI: https://doi.org/10.1017/S0515036100014860
  • Embrechts, P., Furrer, H. and Kaufmann, O. (2003). “Quantifying Regulatory Capital for Operational Risk”. Derivatives Use, Trading and Regulation, 9(3), 217-233.
  • Ferguson, T. S. (1973). “A Bayesian Analysis of Some Nonparametric Problems”. Annals of Statistics, 2(4), 615-629. DOI: https://doi.org/10.1214/aos/1176342360
  • Guo, H. and Hsu, W. (2002). “A Survey of Algorithms for Real-Time Bayesian Network Inference”. Joint Workshop on Real Time Decision Support and Diagnosis Systems, Edmonton, Alberta Canada.
  • Heinrich, G. (2006). “Riesgo Operacional, Sistemas de Pago y Aplicación de Basilea II en América Latina: evolución más reciente.” Boletín del CEMLA.
  • Jensen, F. V. (1996). An Introduction to Bayesian Networks. First edition, Springer.
  • King, J. L. (2001). Operational Risk: Measurement and Modeling. West Sussex, England: John Wiley and Sons.
  • Kartik, A. and Reimer, K. (2007). “Phase transitions in operational risk”. PHYSICAL REVIEW E 75, 016111. DOI: https://doi.org/10.1103/PhysRevE.75.016111
  • Leippold, M. (2003). “The Quantification of Operational Risk”. Social Science Research Network. DOI: https://doi.org/10.2139/ssrn.481742
  • Marcelo, C. (2004). Operational Risk Modelling and Analysis. Risk Books.
  • Moscadelli, M. (2004). “The Modelling of Operational Risk: Experience with the Analysis of the Data Collected by the Basel Committee.” Italy: Bank of Italy. DOI: https://doi.org/10.2139/ssrn.557214
  • Neil, M., Marquez, D. and Fenton, N. (2004). “Bayesian Networks to Model Expected and Unexpected Operational Losses”. Risk analysis, 25(4). DOI: https://doi.org/10.1111/j.1539-6924.2005.00641.x
  • Panjer, H. (2006). Operational Risk Modeling Analytics. First edition, Wiley-Interscience. DOI: https://doi.org/10.1002/0470051310
  • Pearl, J. (2000). Causality, Models, Reasoning, and Inference. Cambridge University Press.
  • Reimer, K. and Neu, P. (2002). “Adequate Capital and Stress Testing for Operational Risks”. Physical Review E 75.
  • ________ (2003) “Functional Correlation Approach to Operational Risk in Banking Organizations”. Physica A, 322, 650–666. DOI: https://doi.org/10.1016/S0378-4371(02)01822-8
  • Svetlozar T., J. Hsu, S. Biliana and F. Fabossi (2008). Bayesian Methods in Finance. The Frank J. Fabozzi Series, Wiley Finance.
  • Supatgiat, C., Kenyon, C. and Heusler, L. (2006). “Cause-to-Effect Operational Risk Quantification and Management”. Risk Management 8(1), 16-42. DOI: https://doi.org/10.1057/palgrave.rm.8250001
  • Venegas-Martínez, F. (2006). Riesgos financieros y económicos (productos derivados y decisiones económicas bajo incertidumbre). 1a. ed., México: International Thomson Editors.
  • Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New York: Wiley.