Estructura vertical y características de las inversiones térmicas nocturnas en el SE de España

  1. Espín Sánchez, David 1
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Cuadernos geográficos de la Universidad de Granada

ISSN: 0210-5462 2340-0129

Año de publicación: 2022

Volumen: 61

Número: 1

Páginas: 79-106

Tipo: Artículo

DOI: 10.30827/CUADGEO.V61I1.21456 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos geográficos de la Universidad de Granada

Resumen

El sureste de la península ibérica se caracteriza por un importante número de días de cielos despejados al año. Bajo condiciones estables, durante las horas nocturnas, se desarrollan procesos de inversión térmica nocturna (ITN) con una notable alteración vertical y espacial en la distribución térmica superficial. El principal objetivo de la investigación es cuantificar el grado de importancia de los procesos de estabilidad nocturna en el sureste peninsular, y su influencia en las temperaturas mínimas superficiales. A través del análisis diario de sondeos atmosféricos nocturnos de la ciudad de Murcia (1986-2015) se identifica la estratificación vertical, frecuencia, tipología o intensidad de los fenómenos de ITN. Los resultados indican una notable importancia y predominio a lo largo del año (83,7% del total), especialmente en invierno. Se realiza, además, un estudio temporal reciente de los procesos de ITN y de las principales variables que lo desencadenan. Finalmente, el análisis se complementa con una caracterización de la capacidad de inversión de los procesos de estabilidad nocturna en superficie a través de 135 estaciones meteorológicas.

Referencias bibliográficas

  • Abdul‐Wahab, S. A., Al‐Saifi, S. Y., Alrumhi, B. A., Abdulraheem, M. Y., & Al‐Uraimi, M. (2004). Determination of the features of the low‐level temperature inversions above a suburban site in Oman using radiosonde temperature measurements: Long‐term analysis. Journal of Geophysical Research: Atmospheres, 109 (D20). https://doi.org/10.1029/2004JD004543
  • Bailey, A.; Chase, T. N.; Cassano, J.J. & Noone, D. (2011). Changing Temperature Inversion Characteristics in the U.S. Southwest and Relationships to Large-Scale Atmospheric Circulation. Journal of Applied Meteorology and Climatology, 50, 1307-1323. https://doi.org/10.1175/2011JAMC2584.1
  • Bello Fuentes, V. (2008). Las inversiones térmicas en el Valle Bajo del Henares. Serie Geográfica, 14, 47-60.
  • Brümmer, B., & Schultze, M. (2015). Analysis of a 7-year low-level temperature inversion data set measured at the 280 m high Hamburg weather mast. Meteorologische Zeitschrift, 24(5), 481-494. https://10.1127/metz/2015/0669
  • Chung, U.; Seo, H.H.; Hwang, K.H.; Hwang, B.S.; Choi, J.J.; Lee, T. & Yun, J.I. (2006). Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology, 137, 15-24. https://doi.org/10.1016/j.agrformet.2005.12.011
  • Clements, C.B.; Whiteman, C. D. & Horel J. D. (2003). Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. Journal of Applied Meteorology, 42, 752-768. https://doi.org/10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2
  • Conesa García, C., Espín Sánchez, D., García Marín, R., Castejón Porcel, G., & Moreno Muñoz, D. (2014). Inversiones térmicas con advección cálida inferior en la Vega Media del Segura (Región de Murcia). Estudios geográficos, 75 (277), 521-552. https://doi.org/10.3989/estgeogr.201416
  • Connolley, W. M. (1996). The Antarctic temperature inversion. International Journal of Climatology: A Journal of the Royal Meteorological Society, 16(12), 1333-1342. https://doi.org/10.1002/(SICI)1097-0088(199612)16:12<1333::AID-JOC96>3.0.CO;2-6
  • Cuadrat, J. M., Serrano-Notivoli, R., Barrao, S., Saz, M. Á., & Tejedor, E. (2021). Temporal variability of the urban heat island in Zaragoza (Spain). Cuadernos de Investigación Geográfica. https://doi.org/10.18172/cig.5022
  • Czarnecka M., Nidzgorska-Lencewicz J., & Rawicki, K., (2016). Thermal inversions and sulphure dioxide concentrations in some Polish cities in the winter season. J Elem 21, 1001–1015. https://doi.org/10.5601/jelem.2016.21.1.1038
  • Czarnecka, M., Nidzgorska-Lencewicz, J., & Rawicki, K. (2018). Temporal structure of thermal inversions in Łeba (Poland). Theoretical and Applied Climatology, 1-14. https://doi.org/10.1007/s00704-018-2459-8
  • Daly, C.; Helmer, E.H. & Quinones, M. (2003). Mapping the climate of Puerto Rico, Vieques, and Culebra. International Journal of Climatology, 23, 1359-1381. https://doi.org/10.1002/joc.937
  • De Martonne, E., (1909). Traité de la Geographie Physique. París: A. Colin.
  • Devasthale, A.; Willen, U.; Karlsson, K.G. & Jones, C.G. (2010). Quantifying the clear sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles Atmospheric. Chemistry and Physics Discussions, 10, 2835-2858. https://10.5194/acp-10-5565-2010
  • Dorta Antequera, P. (1996). Las inversiones térmicas en Canarias. Investigaciones geográficas, 15, 109-124
  • Ekhart, E., (1934). Neuere Untersuchungen zur Aerologie der Talwinde: die periodischen Tages winde in ein em Quertale der Alpen. Beitragezur Physik der Atmosphaere, 21, 245-268.
  • Espín Sánchez, D.; Conesa García, C.; & Castejón Porcel, G. (2018). Temperature Inversions Due to Warm Air Advections at Low Levels: Significant Thermal Contrasts in the Vega Media of the Segura River (Southeast Spain). Advances in Environmental Research (Vol. 64, 7), 139-178.
  • Espín Sánchez, D. (2021). Riesgo de heladas por inversión térmica e incidencia agrícola en la Demarcación Hidrográfica del Segura (DHS). Tesis Doctoral, Universidad de Murcia, 573 pp.
  • Ezpeleta, A.M., (1990). Las inversiones térmicas en la depresión de Sariñena. Geographicalia, 27, 105-120. https://doi.org/10.26754/ojs_geoph/geoph.1990271862
  • Fadnavis, S., & Beig, G. (2004). Mesospheric temperature inversions over the Indian tropical region. Annales Geophysicae, 22, 3375-3382. https://doi.org/10.5194/angeo-22-3375-2004
  • Fochesatto, G. J., (2015). Methodology for determining multilayered temperature inversions. Atmospheric Measurement Techniques, 8(5), 2051-2060. https://doi:10.5194/amt-8-2051-2015
  • Fritz, B. K., Hoffmann, W. C., Lan, Y., Thompson, S. J., & Huang, Y. (2008). Low-level atmospheric temperature inversions and atmospheric stability: characteristics and impacts on agricultural Applications. Agricultural Engineering International: CIGR Journal. 08 001. Vol. X, pag 1-10,
  • García M., Ramírez, H., Ulloa, H., Arias, S. & Pérez, A. (2012). Las inversiones térmicas y la contaminación atmosférica en la zona Metropolitana de Guadalajara (México). Investigaciones Geográficas, 58, 9-29.
  • Garrat, J. R., & Brost R. A., (1981). Radiative cooling effect within and above the nocturnal boundary layer. J. Atmos. Sci., 38, 2730–2745. https://doi.org/10.1175/1520-0469(1981)038<2730:RCEWAA>2.0.CO;2
  • Gil Olcina, A. & Olcina Cantos, J. (2017). Tratado de climatología. Universidad de Alicante.
  • Gillies R.R, Wang S.Y., & Booth, M.R., (2010). Atmospheric scale interaction on wintertime intermountain west low-level inversions. Wea Forecasting 25:1196–1210. https://doi.org/10.1175/2010WAF2222380.1
  • Glickman T., (2000). Glossary of meteorology. American Meteorological Society.
  • Gramsch E., Cáceres, D., Oyola, P., Reyes, F., Vásquez Y., Rubio M.A., & Sánchez G. (2014). Influence of surface and subsidence thermal inversion on PM 2.5 and black carbon concentration. Atmos Environ 98, 290–298. https://doi.org/10.1016/j.atmosenv.2014.08.066
  • Gustavsson, T.; Karlsson, M.; Bogren J. & Lindqvist, S. (1998). Development of temperature patterns during clear nights. Journal of Applied Meteorology, 37, 559-571. https://doi.org/10.1175/1520-0450(1998)037<0559:DOTPDC>2.0.CO;2
  • Halimi M., Yarahmadi D., & Zarei Z (2017). Analysis of the monthly change in the boundary layer height using the vertical temperature profile models. Case study: Tehran’s Mehrabad station. Space communications 6(21), 115-124.
  • Hiebl, J., & Schöner, W., (2018). Temperature inversions in Austria in a warming climate–changes in space and time. Meteorologische Zeitschrift, 309-323. https://10.1127/metz/2018/0899
  • Horton, D. E., & Siffenbaugh, N. S. (2012). Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environmental Research Letters, 7(4), 044034.
  • Humboldt, A. (1874). Cosmos, ensayo de una descripción física del mundo. Madrid, España.
  • Iacobellis, S.F., Norris, J.R., Kanamitsu, M., Tyree, M., & Cayan, D.C., (2009). Climate variability and California low-level temperature inversions. California Climate Change Center, 48.
  • Incecik, S., (1996). Investigation of atmospheric conditions in Istanbul leading to air pollution episodes. Atmospheric Environment, 30(15), 2739-2749. https://doi.org/10.1016/1352-2310(95)00366-5
  • Jiménez, M.A., Ruiz, A., & Cuxart, J., (2015). Estimation of cold pool areas and chilling hours through satellite-derived surface temperatures. Agricultural and Forest Meteorology, 207, 58-68. https://doi.org/10.1016/j.agrformet.2015.03.017
  • Kadygrov, E. N.; Gaykovich, K.P.; Westwater, E.R.; Han, Y. & Widener, K. (1999). Potential performance of boundary layer temperature profile microwave remote sensing: results of field testing at various latitude zones. Proceedings of the Eighth Atmospheric Radiation Measurement (ARM). 353-357.
  • Kahl, J.D., (1990). Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. International Journal of Climatology, 10, 537-548. https://doi.org/10.1002/joc.3370100509
  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. https://doi.org/10.1007/BF02289233
  • Kandil, A. M. M., Elhadidi, B. M., & Sherif, A. O. (2008). Seasonal evaluation of temperature inversion. Proceedings of the IEEE, Conference: The 10th Cairo International Conference on Energy and Environment, At: Luxor, EGYPT 6-11.
  • Kant, I., (1999). Géographie. Physische Geographie. Paris: Aubier, Tradução de Michèle Cohen-Halimi, Max Marcuzzi et Valérie Seroussi.
  • Knozová, G., (2008). Temperature inversions at Prague-Libuš aerological station (1975–2006). In: Kłysik K, Wibig J, Fortuniak K (eds) Klimat i bioklimatmiast. Wydawnictwo Uniwersyte tu Łódzkiego, Katedra Meteorologii i Klimatologii UŁ, Łódź, 65–80.
  • Kendall, M. G., (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.
  • Kendall, M. G., (1975). Rank Correlation Methods, Charles Griffin, London.
  • Kukkonen, J., Pohjola, M., Sokhi, R.S., Luhana, L., Kitwiroon, … & Finardi, S., (2005). Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos. Environ., 39, 2759-2773. https://doi.org/10.1016/j.atmosenv.2004.09.090
  • Largeron Y., & Staquet C. (2016). Persistent inversion dynamics and wintertime PM10 air pollution in alpine valleys. Atmos Environ 135, 92– 108. https://doi.org/10.1016/j.atmosenv.2016.03.045
  • Leukauf, D., Gohm, A., Rotach, M.W., & Wagner J.S., (2015). The impact of the temperature inversion breakup on the exchange of heat and mass in an idealized valley: sensitivity to the radiative forcing. J Appl Meteor Climatol, 54, 2199–2216. https://doi.org/10.1175/JAMC-D- 15-0091.1
  • Li, J., Jian, B., Zhao, C., Zhao, Y., Wang, J., & Huang, J. (2019). Atmospheric instability dominates the long‐term variation of cloud vertical overlap over the Southern Great Plains site. Journal of Geophysical Research: Atmospheres, 124(16), 9691-9701.
  • Lindkvist, L.; Gustavsson, T. & Bogren, J. (2000): A frost assessment method for mountainousareas. Agricultural and Forest Meteorology, 102, 51-67. https://doi.org/10.1016/S0168-1923(99)00087-8
  • Liu, H.; Crawford, J.; Pierce, B.; Norris, P.M.; Platnick, S… &Tie, X., (2006). Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model. Journal of Geophysical Research, 111. https://doi.org/10.1029/2005JD006403
  • López Gómez, A. (1975). Inversión de temperatura entre Madrid y la Sierra de Guadarrama con advección cálida superior. Estudios Geográficos, 36 (138-139), 567-604.
  • Lundquist, J.D.; Pepin, N. & Rochford, C. (2008). Automated algorithm for mapping regions of cold-air pooling in complex terrain. Journal of Geophysical Research, 113. https://doi:10.1029/2008JD009879
  • Malek, E.; Davis, T.; Martin, R.S. & Silva, P.J., (2006). Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. Atmospheric Research, 79 (2), 108-122. https://doi.org/10.1016/j.atmosres.2005.05.003
  • Malingowski, J., Atkinson, D., Fochesatto, J., Cherry, J., & Stevens, E. (2014). An observational study of radiation temperature inversions in Fairbanks, Alaska. Polar Science, 8(1), 24-39. https://doi.org/10.1016/j.polar.2014.01.002
  • Martín Vide, J., & Fructuoso Aranda, S., (1993). Las inversiones térmicas acusadas en el Vallès Oriental. Geografía i Territori. Colecció Homenatges: Profesor Lluis Casassas, Universitat de Barcelona, 219-226.
  • Marvin, C. F., (1914). Air drainage explained. Monthly Weather Review, 42(10), 583-585.
  • Mayfield, J. A., & Fochesatto G. J., (2010). A study of elevated and surface-based inversions in the Interior of Alaska. Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A21C-0070.
  • McChesney, C.J.; Koch, J.M. & Bell D.T., (1995). Jarrah forest restoration in Western Australia: canopy and topographic effects. Restoration Ecology, 3, 105-110. https://doi.org/10.1111/j.1526-100X.1995.tb00083.x
  • Milionis, A.E., & Davies, T.D., (2008). A comparison of temperature inversion statistics at a coastal and a non-coastal location influenced by the same synoptic regime. Theor Appl Climatol, 94, 225–239. https://doi.org/10.1007/s00704-007-0356-7
  • Miller, D.R.; Bergen, J.D., & Neuroth, G., (1983). Cold air drainage in a narrow forested valley. Forest Science, 29, 357-370. https://doi.org/10.1093/forestscience/29.2.357
  • Miró, J.R., Peña, J.C., Pepin, N., Sairouni, A., & Aran, M., (2017). Key features of cold-air pool episodes in the northeast of the Iberian Peninsula (Cerdanya, eastern Pyrenees). International Journal of Climatology, 37. http://dx.doi.org/10.1002/joc.5236
  • Morbidelli, R., Corradini, C., Saltalippi, C., & Flammini, A., (2011). Atmospheric stability and meteorological scenarios as inputs to air pollution transport modeling. Water Air Soil Pollut, 218, 275-281. https://doi.org/10.1007/s11270-010-0640-5
  • Nidzgorska-Lencewicz, J., & Czarnecka, M. (2015). Winter weather conditions vs. air quality in Tricity, Poland. TheorAppl Climatol 119, 611–627. https://doi.org/10.1007/s00704-014-1129-8
  • Ochoa-Jaramillo, A., & Cantor-Gómez, D., (2011). Tendencias de largo plazo en cinco índices de estabilidad atmosférica en Colombia. In IX Congreso Colombiano de Meteorología y Conferencia Internacional (23-25).
  • Olcina, A. G., & Cantos, J. O., (2017). Tratado de climatología. Universidad de Alicante, 978-84-9717-519-7, 952 pp..
  • Olofson K.F.G, Andersson P.U., Hallquist M., Ljungström E., Tang L., ..., & Pettersson J.B. (2009). Urban aerosol evolution and particle formation during wintertime temperature inversions. Atmos Environ 43, 340–346. https://doi.org/10.1016/j.atmosenv.2008.09.080 .
  • Ortega-García, J. A., Martínez-Hernández, I., Boldo, E., Cárceles-Álvarez, A., Solano-Navarro, C., Ramis, R., ... & López-Hernández, F. (2020). Contaminación atmosférica urbana e ingresos hospitalarios por asma y enfermedades respiratorias agudas en la ciudad de Murcia (Espana). Anales de Pediatría (Vol. 93, No. 2, pp. 95-102).
  • Pagès, M., Pepin, N. & Miró, J.R., (2017). Measurement and modelling of temperature cold pools in the Cerdanya valley (Pyrenees), Spain. Meteorological Applications, 2(24): 290- 302. http://dx.doi.org/10.1002/met.1630
  • Palarz A., Celiński-Mysław, D., & Ustrnul, Z., (2017). Temporal and spatial variability of surface-based inversions over Europe based on ERA interim reanalysis. Int J Climatol, 38, 158–168. https://doi.org/101002/joc.5167
  • Parczewski, W., (1976). Thermo-dynamic stability of vertical air in Poland. PrInst Meteorol GospWodnej 102.
  • Pasquill, F. & Smith, F.B., (1983). Atmospheric Diffusion: A Study of the Dispersion of Windborne Material from Industrial and Other Sources. Chichester, West Sussex, England: Ellis Horwood Limited.
  • Quereda, J., Montón, E., Escrig, J., Ruescas, A.B., & Mollá, B., (2004). La previsión de nieblas en la cuenca occidental del mediterráneo. El Clima entre el Mar y la Montaña, Santander. En García Codrón et al. (editores). Publicaciones de la Asociación Española de Climatología, serie A, nº 4. Santander, 125-134.
  • Rasilla, D., Fernández García, F., Allende, F., & Martilli, A., (2018): Estancamiento atmosférico e inversiones térmicas en la meseta meridional. XI Congreso AEC En Montávez Gómez et al. (editores) El clima: aire, agua, tierra y fuego. Publicaciones de la Asociación Española de Climatología, serie A, nº 11. Cartagena, 363-372.
  • Rendón, A.M., Salazar J.F., Palacio C.A., & Wirth V., (2015). Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. J Appl Meteor Climatol, 54, 302–321. https://doi.org/10.1175/JAMC-D-14-0111.1
  • Ruiz Álvarez, V. (2021). Estimación del Impacto del Cambio Global sobre el Riesgo de Sequía en el Sureste de España: Evaluación y Pronóstico sobre los Recursos Hídricos y el Uso del Agua. Tesis Doctoral. Universidad de Murcia, 504 pp.
  • Schnelle, K.B., & Brown, C.A. (2002). The air pollution control technology handbook. CRC Press, Boca Raton.
  • Sharma, S., (1996). Applied Multivariate Techniques. John Wiley and Sons, Inc., New York
  • Silva P.J., Vawdrey, EL., Corbett M., & Erupe M., (2007). Fine particle concentrations and composition during wintertime inversions in Logan, Utah, USA. Atmos Environ 41, 5410–5422. https://doi.org/10. 1016/j.atmosenv.2007.02.016
  • Snedecor, G. W., & Cochran, W. G. (1983). Statistical Methods. Oxford and IBH publishing company, New Delhi.
  • Stryhal J., Huth R. & Sládek I. (2017). Climatology of low-level temperature inversions at the Prague Libuš aerological station. TheorAppl Climatol 127, 409–420. https://doi.org/10.1007/s00704-015-1639-z
  • Tavousi, T., & Abadi, N. H. (2016). Investigation of inversion characteristics in atmospheric boundary layer: a case study of Tehran, Iran. Modeling Earth Systems and Environment, 2(2), 85. https://doi.org/10.1007/s40808-016-0139-1
  • Vihma, T.; Kilpeläinen, T.; Manninen, M.; Sjöblom, A.; Jakobson, E.; Palo, T.; ... & Maturilli, M., (2011). Characteristics of Temperature and Humidity Inversions and Low-Level Jets over Svalbard Fjords in Spring. Advances in Meteorology, 14. https://doi.org/10.1155/2011/486807
  • Wang, M. Z., Lu, H., Ming, H., & Zhang, J., (2016). Vertical structure of summer clear‐sky atmospheric boundary layer over the hinterland and southern margin of Taklamakan Desert. Meteorological Applications, 23(3), 438-447. https://doi.org/10.1002/met.1568
  • Watson, J.G., & Chow J.C. (2002). A wintertime PM2.5 episodes at the Fresno, CA, supersite. Atmos. Environ. 36, 465–475. https://doi.org/10.1016/S1352-2310(01)00309-0
  • Whiteman, C.D., (2000). Mountain Meteorology: Fundamentals and Applications. Oxford University Press. Oxford, 355 pp.
  • Whiteman, C.D.; Pospichal, B.; Eisenbach, S.; Weihs, P.; Clements, C. B.; Steinacker & Dorninger, M. (2004). Inversion Breakup in Small Rocky Mountain and Alpine Basins. Journal of Applied Climatology and Meteorology, 43, 1069-1082. https://doi.org/10.1175/1520-0450(2004)043<1069:IBISRM>2.0.CO;2
  • Young, F.D., (1923). Nocturnal temperature inversions in Oregon and California. Monthly Weather Review, 49, 138-148. https://doi.org/10.1175/1520-0493(1921)49<138:NTIIOA>2.0.CO;2
  • Zängl, G., (2005). Dynamical aspects of wintertime cold-air pools in an alpine valley system. Monthly Weather Review, 133, 2721-2740. https://doi.org/10.1175/MWR2996.1
  • Zhang Y.H., Zhang S.D., Yi F., & Chen Z.Y. (2011). Statistics of lower tropospheric inversions over the continental United States. Ann Geophys 29, 401–410. https://doi.org/10.5194/angeo-29
  • Zhang, Y., Seidel, D. J., & Zhang, S., (2013). Trends in planetary boundary layer height over Europe. Journal of Climate, 26(24), 10071-10076. https://doi.org/10.1175/JCLI-D-13-00108.1
  • Zhao, Y., Mao, W., Zhang, K., LI, H., & Zhang, W., (2017). Climatic Variations in the Boundary Layer Height of Arid and Semiarid Areas in East Asia and North Africa. Journal of the Meteorological Society of Japan. 95(3), 181-197. https://doi.org/10.2151/jmsj.2017-010