Resistencia fenotípica y genotípica en los patotipos AIEC, STEC y EAEC de E. coli

  1. Ruiz Herrero, Eduardo 1
  2. Caro Vergara, Maria Rosa 1
  3. Ortega Hernández, Nieves 1
  1. 1 Departamento de Sanidad Animal. Universidad de Murcia
Revista:
Anales de veterinaria de Murcia

ISSN: 0213-5434 1989-1784

Any de publicació: 2022

Número: 36

Pàgines: 65-82

Tipus: Article

DOI: 10.6018/ANALESVET.540611 DIALNET GOOGLE SCHOLAR lock_openDIGITUM editor

Altres publicacions en: Anales de veterinaria de Murcia

Resum

Escherichia coli is a bacteria that is very present in our daily life, as a commensal or pathogenic organism. There are a large number of pathogenic strains capable of producing diseases, being of great importance for public health those strains transmitted through food, causing foodborne infections with great morbidity. In some cases, the strains that cause these outbreaks can be highly pathogenic, causing high mortality and very serious health implications for those affected. In this study, we focused on investigating the presence of strains transmitted through food of meat origin that belong to one of the 3 pathotypes investigated (STEC, AIEC and EAEC). On the other hand, we proposed to investigate the antibiotic resistance of E. coli strains isolated from meat foods. Our results showed the high phenotypic resistance of the great majority of E. coli strains isolated in this study, posing a serious problem for public health. This makes it necessary to maximize vigilance and control measures for these pathotypes throughout the food chain. It is also necessary to be cautious in the use of antibiotics, since their inappropriate use would lead to an increase in the therapeutic difficulty of infections, threatening to put an end to a century of medical advances.

Referències bibliogràfiques

  • Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45(4), 493–496.
  • Bélanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., & Dozois, C. M. (2011). Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS immunology and medical microbiology, 62(1), 1–10. https://doi.org/10.1111/j.1574-695X.2011.00797.x
  • Bennett, J. E., Md, D. R., & Md, M. B. J. (2019). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases: 2-Volume Set. En Molecular Mechanisms of Antibiotic Resistance in Bacteria (9th ed., pp. 235–251). Elsevier.
  • Bryan, A., Youngster, I., & McAdam, A. J. (2015). Shiga Toxin Producing Escherichia coli. Clinics in laboratory medicine, 35(2), 247–272. https://doi.org/10.1016/j.cll.2015.02.004
  • Canet, Juan José [consultado 16 Mayo 2022]. Escherichia Coli: características, patogenicidad y prevención (I) .Betelgeux, Christeyns food higiene. Disponible en : https://www.betelgeux.es/blog/2016/01/19/escherichia-coli-caracteristicas-patogenicidad-y-prevencion-i/#:~:text=de%20Escherichia%20coli.-,E.,lactosa%20con%20producci%C3%B3n%20de%20gas.
  • Carrique-Mas, J. J., & Bryant, J. E. (2013). A review of foodborne bacterial and parasitic zoonoses in Vietnam. EcoHealth, 10(4), 465–489. https://doi.org/10.1007/s10393-013-0884-9
  • Clinical and Laboratory Standards Institute (CLSI) (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and laboratory standards Institute.
  • Courvalin P. (2008). Predictable and unpredictable evolution of antibiotic resistance. Journal of internal medicine, 264(1), 4–16. https://doi.org/10.1111/j.1365-2796.2008.01940.x
  • Da Silva, G. J., & Mendonça, N. (2012). Association between antimicrobial resistance and virulence in Escherichia coli. Virulence, 3(1), 18–28. https://doi.org/10.4161/viru.3.1.18382
  • Darfeuille-Michaud A. (2002). Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn's disease. International journal of medical microbiology : IJMM, 292(3-4), 185–193. https://doi.org/10.1078/1438-4221-00201
  • Doyle, M. & Archer, John & Kaspar, Charles & Weiss, Ronald. (2011). Human Illness Caused by E. coli O157:H7 from Food and Non-food Sources.
  • Duan, Q., Yao, F., & Zhu, G. (2011). Major virulence factors of enterotoxigenic Escherichia coli in pigs. Annals of Microbiology, 62(1), 7–14. https://doi.org/10.1007/s13213-011-0279-5
  • E.C.D.P.C. (2022). Surveillance Atlas of Infectious Diseases. European Centre for Disease Prevention and Control. Consultado 16 de mayo de 2022, de https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4
  • Ewers, C., Antão, E. M., Diehl, I., Philipp, H. C., & Wieler, L. H. (2009). Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Applied and environmental microbiology, 75(1), 184–192. https://doi.org/10.1128/AEM.01324-08
  • Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369–378. https://doi.org/10.1016/j.jiph.2016.08.007
  • Gomes, T. A., Elias, W. P., Scaletsky, I. C., Guth, B. E., Rodrigues, J. F., Piazza, R. M., Ferreira, L. C., & Martinez, M. B. (2016). Diarrheagenic Escherichia coli. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 47 Suppl 1(Suppl 1), 3–30. https://doi.org/10.1016/j.bjm.2016.10.015
  • Hebbelstrup Jensen, B., Poulsen, A., Hebbelstrup Rye Rasmussen, S., Struve, C., Engberg, J. H., Friis-Møller, A., Boisen, N., Jønsson, R., Petersen, R. F., Petersen, A. M., & Krogfelt, K. A. (2017). Genetic Virulence Profile of Enteroaggregative Escherichia coli Strains Isolated from Danish Children with Either Acute or Persistent Diarrhea. Frontiers in cellular and infection microbiology, 7, 230. https://doi.org/10.3389/fcimb.2017.00230
  • Irrgang, A., Roschanski, N., Tenhagen, B. A., Grobbel, M., Skladnikiewicz-Ziemer, T., Thomas, K., Roesler, U., & Käsbohrer, A. (2016). Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010-2015. PloS one, 11(7), e0159863. https://doi.org/10.1371/journal.pone.0159863
  • Jafari, A., Aslani, M. M., & Bouzari, S. (2012). Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iranian journal of microbiology, 4(3), 102–117.
  • Jenkins C. (2018). Enteroaggregative Escherichia coli. Current topics in microbiology and immunology, 416, 27–50. https://doi.org/10.1007/82_2018_105
  • Jørgensen, S. L., Stegger, M., Kudirkiene, E., Lilje, B., Poulsen, L. L., Ronco, T., Pires Dos Santos, T., Kiil, K., Bisgaard, M., Pedersen, K., Nolan, L. K., Price, L. B., Olsen, R. H., Andersen, P. S., & Christensen, H. (2019). Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95. mSphere, 4(1), e00333-18. https://doi.org/10.1128/mSphere.00333-18
  • Khondker, A., & Rheinstädter, M. C. (2020). How do bacterial membranes resist polymyxin antibiotics?. Communications biology, 3(1), 77. https://doi.org/10.1038/s42003-020-0803-x
  • Ling, Z., Yin, W., Shen, Z., Wang, Y., Shen, J., & Walsh, T. R. (2020). Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. The Journal of antimicrobial chemotherapy, 75(11), 3087–3095. https://doi.org/10.1093/jac/dkaa205
  • Liu, Z., Wang, K., Zhang, Y., Xia, L., Zhao, L., Guo, C., Liu, X., Qin, L., & Hao, Z. (2022). High Prevalence and Diversity Characteristics of blaNDM, mcr, and blaESBLs Harboring Multidrug-Resistant Escherichia coli From Chicken, Pig, and Cattle in China. Frontiers in cellular and infection microbiology, 11, 755545. https://doi.org/10.3389/fcimb.2021.755545
  • Luo, Y., Luo, R., Ding, H., Ren, X., Luo, H., Zhang, Y., Ye, L., & Cui, S. (2018). Characterization of Carbapenem-Resistant Escherichia coli Isolates Through the Whole-Genome Sequencing Analysis. Microbial drug resistance (Larchmont, N.Y.), 24(2), 175–180. https://doi.org/10.1089/mdr.2017.0079
  • Machota, S. V., Durán, S. P., & Yanes, E. M. M. (2002). Manual de Microbiología veterinaria. McGraw-Hill Education.
  • Maravić G. (2004). Macrolide resistance based on the Erm-mediated rRNA methylation. Current drug targets. Infectious disorders, 4(3), 193–202. https://doi.org/10.2174/1568005043340777
  • Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical Veterinary Microbiology - Elsevieron VitalSource (English Edition) (2.a ed.). Mosby Ltd.
  • McFARLAND, J. (1907b). THE NEPHELOMETER:AN INSTRUMENT FOR ESTIMATING THE NUMBER OF BACTERIA IN SUSPENSIONS USED FOR CALCULATING THE OPSONIC INDEX AND FOR VACCINES. JAMA: The Journal of the American Medical Association, XLIX(14), 1176. https://doi.org/10.1001/jama.1907.25320140022001f
  • Mellata M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne pathogens and disease, 10(11), 916–932. https://doi.org/10.1089/fpd.2013.1533
  • Michel, P., Wilson, J. B., Martin, S. W., Clarke, R. C., McEwen, S. A., & Gyles, C. L. (1999). Temporal and geographical distributions of reported cases of Escherichia coli O157:H7 infection in Ontario. Epidemiology and infection, 122(2), 193–200. https://doi.org/10.1017/s0950268899002083
  • Moffatt, J. H., Harper, M., & Boyce, J. D. (2019). Mechanisms of Polymyxin Resistance. Advances in experimental medicine and biology, 1145, 55–71. https://doi.org/10.1007/978-3-030-16373-0_5
  • Mora, A., Herrrera, A., López, C., Dahbi, G., Mamani, R., Pita, J. M., Alonso, M. P., Llovo, J., Bernárdez, M. I., Blanco, J. E., Blanco, M., & Blanco, J. (2011). Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain. International microbiology : the official journal of the Spanish Society for Microbiology, 14(3), 121–141. https://doi.org/10.2436/20.1501.01.142
  • Mora, A., López, C., Dhabi, G., López-Beceiro, A. M., Fidalgo, L. E., Díaz, E. A., Martínez-Carrasco, C., Mamani, R., Herrera, A., Blanco, J. E., Blanco, M., & Blanco, J. (2012). Seropathotypes, Phylogroups, Stx subtypes, and intimin types of wildlife-carried, shiga toxin-producing escherichia coli strains with the same characteristics as human-pathogenic isolates. Applied and environmental microbiology, 78(8), 2578–2585. https://doi.org/10.1128/AEM.07520-11
  • Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2), 10.1128/microbiolspec.VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
  • Nagy, B., & Fekete, P. Z. (1999). Enterotoxigenic Escherichia coli (ETEC) in farm animals. Veterinary research, 30(2-3), 259–284.
  • Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clinical microbiology reviews, 11(1), 142–201. https://doi.org/10.1128/CMR.11.1.142
  • O.P.S. (2021, 3 marzo). La resistencia antimicrobiana pone en riesgo la salud mundial. OPS/OMS |Organización Panamericana de la Salud. Recuperado 15 de mayo de 2022, de https://www.paho.org/es/noticias/3-3-2021-resistencia-antimicrobiana-pone-riesgo-salud-mundial#:%7E:text=M%C3%A1s%20de%20700%20mil%20muertes,p%C3%A9rdidas%20econ%C3%B3micas%20que%20superar%C3%ADan%20los
  • Orth, P., Schnappinger, D., Sum, P. E., Ellestad, G. A., Hillen, W., Saenger, W., & Hinrichs, W. (1999). Crystal structure of the tet repressor in complex with a novel tetracycline, 9-(N,N-dimethylglycylamido)- 6-demethyl-6-deoxy-tetracycline. Journal of molecular biology, 285(2), 455–461. https://doi.org/10.1006/jmbi.1998.2290
  • Osek, J., & Dacko, J. (2001). Development of a PCR-based method for specific identification of genotypic markers of shiga toxin-producing Escherichia coli strains. Journal of veterinary medicine. B, Infectious diseases and veterinary public health, 48(10), 771–778. https://doi.org/10.1046/j.1439-0450.2001.00508.x
  • Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: past, present, and future. Antimicrobial agents and chemotherapy, 55(11), 4943–4960. https://doi.org/10.1128/AAC.00296-11
  • Pires, S. M., Fischer-Walker, C. L., Lanata, C. F., Devleesschauwer, B., Hall, A. J., Kirk, M. D., Duarte, A. S., Black, R. E., & Angulo, F. J. (2015). Aetiology-Specific Estimates of the Global and Regional Incidence and Mortality of Diarrhoeal Diseases Commonly Transmitted through Food. PloS one, 10(12), e0142927. https://doi.org/10.1371/journal.pone.0142927
  • Poirel, L., Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic microbiology and infectious disease, 70(1), 119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002
  • Pormohammad, A., Nasiri, M. J., & Azimi, T. (2019). Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infection and drug resistance, 12, 1181–1197. https://doi.org/10.2147/IDR.S201324
  • Ramesh, R., Munshi, A., & Panda, S. K. (1992). Polymerase chain reaction. The National medical journal of India, 5(3), 115–119.
  • Rehman, M. U., Yang, H., Zhang, S., Huang, Y., Zhou, R., Gong, S., Feng, Q., Chen, S., Yang, J., Yang, Z., Abbas, M., Cui, M., Wang, M., Jia, R., Chen, S., Liu, M., Zhu, D., Zhao, X., Wu, Y., Yang, Q., … Cheng, A. (2020). Emergence of Escherichia coli isolates producing NDM-1 carbapenemase from waterfowls in Hainan island, China. Acta tropica, 207, 105485. https://doi.org/10.1016/j.actatropica.2020.105485
  • Sisay, Mekonnen. (2015). A Review on Major Food Borne Bacterial Illnesses. Journal of Tropical Diseases. 03. 10.4172/2329-891X.1000176.
  • The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, 2022. http://www.eucast.org.
  • Vazeille, E., Chassaing, B., Buisson, A., Dubois, A., de Vallée, A., Billard, E., Neut, C., Bommelaer, G., Colombel, J. F., Barnich, N., Darfeuille-Michaud, A., & Bringer, M. A. (2016). GipA Factor Supports Colonization of Peyer's Patches by Crohn's Disease-associated Escherichia Coli. Inflammatory bowel diseases, 22(1), 68–81. https://doi.org/10.1097/MIB.0000000000000609
  • Vera-Leiva, A., Barría-Loaiza, C., Carrasco-Anabalón, S., Lima, C., Aguayo-Reyes, A., Domínguez, M., Bello-Toledo, H., & González-Rocha, G. (2017). KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias [KPC: Klebsiella pneumoniae carbapenemase, main carbapenemase in Enterobacteriaceae]. Revista chilena de infectologia : organo oficial de la Sociedad Chilena de Infectologia, 34(5), 476–484. https://doi.org/10.4067/S0716-10182017000500476
  • Vlisidou, I., Dziva, F., La Ragione, R. M., Best, A., Garmendia, J., Hawes, P., Monaghan, P., Cawthraw, S. A., Frankel, G., Woodward, M. J., & Stevens, M. P. (2006). Role of intimin-tir interactions and the tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infection and immunity, 74(1), 758–764. https://doi.org/10.1128/IAI.74.1.758-764.2006
  • Watahiki, M., Isobe, J., Kimata, K., Shima, T., Kanatani, J., Shimizu, M., Nagata, A., Kawakami, K., Yamada, M., Izumiya, H., Iyoda, S., Morita-Ishihara, T., Mitobe, J., Terajima, J., Ohnishi, M., & Sata, T. (2014). Characterization of enterohemorrhagic Escherichia coli O111 and O157 strains isolated from outbreak patients in Japan. Journal of clinical microbiology, 52(8), 2757–2763. https://doi.org/10.1128/JCM.00420-14
  • Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Johnson-Rollings, A. S., Jones, D. L., Lee, N. M., Otten, W., Thomas, C. M., & Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet. Infectious diseases, 13(2), 155–165. https://doi.org/10.1016/S1473-3099(12)70317-1
  • World Health Organization. 2014. Antimicrobial Resistance: Global Report on Surveillance 2014
  • Yang, S. C., Lin, C. H., Aljuffali, I. A., & Fang, J. Y. (2017). Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Archives of microbiology, 199(6), 811–825. https://doi.org/10.1007/s00203-017-1393-y
  • Zhang, J., Chen, L., Wang, J., Yassin, A. K., Butaye, P., Kelly, P., Gong, J., Guo, W., Li, J., Li, M., Yang, F., Feng, Z., Jiang, P., Song, C., Wang, Y., You, J., Yang, Y., Price, S., Qi, K., Kang, Y., … Wang, C. (2018). Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Scientific reports, 8(1), 3705. https://doi.org/10.1038/s41598-018-22084-4
  • Zhang, T., Lu, H., Wang, L., Yin, M., & Yang, L. (2018). Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions. PloS one, 13(8), e0201736. https://doi.org/10.1371/journal.pone.0201736