Estudio de la microbiota del insecto tenebrio molitor en diferentes condiciones de luz y con dos dietas basadas en subproductos de la industria alimentaria

  1. Ángel-Sánchez, Antonio 1
  2. Galián, José 2
  1. 1 Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, España
  2. 2 Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, España. ArthropoTech S.L., Edificio Vitalis, 2a planta, Despacho 2.15, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, España.
Revista:
Anales de veterinaria de Murcia

ISSN: 0213-5434 1989-1784

Año de publicación: 2022

Número: 36

Páginas: 96-116

Tipo: Artículo

DOI: 10.6018/ANALESVET.535101 DIALNET GOOGLE SCHOLAR lock_openDIGITUM editor

Otras publicaciones en: Anales de veterinaria de Murcia

Resumen

La microbiota intestinal de los insectos se puede definir como la comunidad de microorganismos que viven en el tracto intestinal, y que realiza funciones básicas en los procesos digestivos y del sistema inmune. El objetivo de este estudio es el de analizar la microbiota de larvas de Tenebrio molitor, insecto autorizado para su consumo en la UE, en distintas condiciones de luz y con dos dietas. Se estudia el efecto en la microbiota al someterse a luz continua, fotoperiodo, oscuridad continua y luz roja continua, y dos dietas diferentes a base de subproductos de la industria alimentaria, una compuesta por 80% de brócoli y 20% de avena, y otra de 80% de posos del café y 20% de avena.En todos los tratamientos predominan los filos Tenericutes, Proteobacteria, Firmicutes y Cyanobacteria; y en menor proporción, Bacteroidetes y Actinobacteria.Como conclusión, se determinó que diferentes condiciones de luz no muestran variación en la composición bacteriana de T. molitor, sin embargo, distintas dietas modifican su microbiota intestinal. En la de dieta de brócoli predominan Tenericutes (media de 41,9%) y Firmicutes (31,3%), mientras que en la de posos de café son mayoritarias bacterias del filo Proteobacteria (62%).

Referencias bibliográficas

  • Aguilar–Miranda, E., López, M., Escamilla–Santana, C., y Barba de la Rosa, A. (2001). Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. Journal Of Agricultural And Food Chemistry, 50(1), 192–195. https://doi.org/10.1021/jf010691y
  • Anastasia Hicks, K. (2017). Population Assay of Tenebrio molitor (Linnaeus) (Coleoptera: Tenebrionidae): Growth and Development Analysis. Instars: A Journal of Student Research, 3.
  • Baek, S., Perez, A., Turcotte, R., White, J., Adedipe, F., y Park, Y. (2015). Response of Tenebrio molitor (Coleoptera: Tenebrionidae) adults to potato: Implications for monitoring and sampling. Journal Of Stored Products Research, 60, 5–10. https://doi.org/10.1016/j.jspr.2014.11.002
  • Balfour, C., y Carmichael, L. (1928). The Light Reactions of the Meal Worm (Tenebrio molitor Linn). The American Journal Of Psychology, 40(4), 576–584. https://doi.org/10.2307/1414336
  • Ben Guerrero, E. (2018). Análisis del microbioma de insectos: identificación y caracterización de glicosil hidrolasas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.
  • Campos–Vega, R., Loarca–Piña, G., Vergara–Castañeda, H., y Oomah, B. (2015). Spent coffee grounds: A review on current research and future prospects. Trends In Food Science & Technology, 45(1), 24–36. https://doi.org/10.1016/j.tifs.2015.04.012
  • Deruytter, D., Coudron, C., y Claeys, J. (2020). The influence of wet feed distribution on the density, growth rate and growth variability of Tenebrio molitor. Journal of Insects as Food and Feed, 7(2), 141–149. https://doi.org/10.3920/jiff2020.0049
  • Dillon, R., y Dillon, V. (2004). The gut bacteria of insects: Nonpathogenic Interactions. Annual Review Of Entomology, 49(1), 71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  • dos Reis, L., de Oliveira, V., Hagen, M., Jablonski, A., Flôres, S., y de Oliveira Rios, A. (2015). Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system. Food Chemistry, 172, 770–777. https://doi.org/10.1016/j.foodchem.2014.09.124
  • Engel, P., y Moran, N. (2013). The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025
  • Garofalo, C., Osimani, A., Milanović, V., Taccari, M., Cardinali, F., y Aquilanti, L. et al. (2017). The microbiota of marketed processed edible insects as revealed by high–throughput sequencing. Food Microbiology, 62, 15–22. https://doi.org/10.1016/j.fm.2016.09.012
  • Ghaly, A., y Alkoaik, F. (2009). The Yellow Mealworm as a Novel Source of Protein. American Journal Of Agricultural And Biological Sciences, 4(4), 319–331. https://doi.org/10.3844/ajabssp.2009.319.331
  • Grau, T., Vilcinskas, A., y Joop, G. (2017). Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift Für Naturforschung C, 72(9–10), 337–349. https://doi.org/10.1515/znc-2017-0033
  • Gupta, A., y Nair, S. (2020). Dynamics of Insect–Microbiome Interaction Influence Host and Microbial Symbiont. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01357
  • Jiang, J., He, Y., Kou, H., Ju, Z., Gao, X., y Zhao, H. (2020). The effects of artificial light at night on Eurasian tree sparrow (Passer montanus): Behavioral rhythm disruption, melatonin suppression and intestinal microbiota alterations. Ecological Indicators, 108, 105702. https://doi.org/10.1016/j.ecolind.2019.105702
  • Jung, J., Heo, A., Park, Y., Kim, Y., Koh, H., y Park, W. (2014). Gut Microbiota of Tenebrio molitor and Their Response to Environmental Change. Journal Of Microbiology And Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016
  • Kim, Y., Snijders, A., Brislawn, C., Stratton, K., Zink, E., y Fansler, S. et al. (2019). Light–Stress Influences the Composition of the Murine Gut Microbiome, Memory Function, and Plasma Metabolome. Frontiers In Molecular Biosciences, 6. https://doi.org/10.3389/fmolb.2019.00108
  • Liebert, A., Bicknell, B., Johnstone, D., Gordon, L., Kiat, H., y Hamblin, M. (2019). “Photobiomics”: Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodulation, Photomedicine, And Laser Surgery, 37(11), 681–693. https://doi.org/10.1089/photob.2019.4628
  • Mendaza Lainez, E. (2017). Influencia de diferentes dietas en la composición nutricional del insecto comestible Tenebrio molitor y estudio de su pardeamiento. Universidad Pública de Navarra.
  • Murray, D. (1968). The importance of water in the normal growth of larvae of Tenebrio molitor. Entomologia Experimentalis Et Applicata, 11(2), 149–168. https://doi.org/10.1111/j.1570-7458.1968.tb02041.x
  • Nino Loreto, D. (2019). Larval performance, morphological, behavioural and electrophisiological studies on Tenebrio molitor L. (Coleoptera: Tenebrionidae). Università Politecnica delle Marche.
  • Osimani, A., Milanović, V., Cardinali, F., Garofalo, C., Clementi, F., y Pasquini, M. et al. (2018). The bacterial biota of laboratory–reared edible mealworms (Tenebrio molitor L.): From feed to frass. International Journal Of Food Microbiology, 272, 49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001
  • Poveda Arias, J. (2019). Los microorganismos asociados a los insectos y su aplicación en la agricultura. Revista Digital Universitaria, 20(1). http://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2
  • Rajagopal, R. (2009). Beneficial interactions between insects and gut bacteria. Indian Journal Of Microbiology, 49(2), 114–119. https://doi.org/10.1007/s12088-009-0023-z
  • Ramos–Elorduy, J., González, E., Hernández, A., y Pino, J. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. Journal Of Economic Entomology, 95(1), 214–220. https://doi.org/10.1603/0022-0493-95.1.214
  • Ravzanaadii, N., Kim, S., Choi, W., Hong, S., y Kim, N. (2012). Nutritional Value of Mealworm, Tenebrio molitor as Food Source. International Journal Of Industrial Entomology, 25(1), 93–98. https://doi.org/10.7852/ijie.2012.25.1.093
  • Resh, V. y Cardé, R. (2009). Encyclopedia of Insects (2ª edición). Elsevier’s Science & Technology.
  • Schmidt, K., y Engel, P. (2021). Mechanisms underlying gut microbiota–host interactions in insects. Journal Of Experimental Biology, 224(2). https://doi.org/10.1242/jeb.207696
  • Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K., Polak–Juszczak, L., Jarocki, A., y Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(6), 287–291. https://doi.org/10.4236/as.2013.46041
  • Stoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B., y Van Campenhout, L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiology, 53, 122–127. https://doi.org/10.1016/j.fm.2015.09.010
  • Vandeweyer, D., Crauwels, S., Lievens, B., y Van Campenhout, L. (2017). Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies. International Journal Of Food Microbiology, 261, 11–18. https://doi.org/10.1016/j.ijfoodmicro.2017.08.018
  • Vargas Jerez, A., José Vivero, R., Uribe, S., Moreno, C. y Cadavid Restrepo, G. (2012). Interacción de microbiotas bacterianas e insectos. Boletín del Museo Entomológico, 4(3), 13–21.
  • Wang, Y. y Zhang, Y. (2015). Investigation of Gut–Associated Bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae Using Culture–Dependent and DGGE Methods. Annals of the Entomological Society of America, 108 (5), 941–949. https://doi.org/10.1093/aesa/sav079
  • Wei, L., Yue, F., Xing, L., Wu, S., Shi, Y., y Li, J. et al. (2020). Constant Light Exposure Alters Gut Microbiota and Promotes the Progression of Steatohepatitis in High Fat Diet Rats. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01975
  • Wynants, E., Crauwels, S., Lievens, B., Luca, S., Claes, J., y Borremans, A. et al. (2017). Effect of post–harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innovative Food Science & Emerging Technologies, 42, 8–15. https://doi.org/10.1016/j.ifset.2017.06.004