Fiabilidad en la detección de las superficies selladas empleando datos del programa Copernicus

  1. Illán-Fernández, Emilio José 1
  2. Pérez-Morales, Alfredo
  3. Romero-Díaz, Asunción
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
BAGE. Boletín de la Asociación Española de Geografía

ISSN: 0212-9426 2605-3322

Año de publicación: 2022

Número: 93

Tipo: Artículo

DOI: 10.21138/BAGE.3288 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: BAGE. Boletín de la Asociación Española de Geografía

Resumen

Durante los últimos 50 años se han producido cambios significativos en las cubiertas y usos del suelo, principalmente aquellos catalogados como artificiales. Este proceso, y su generalización a escala global, afectan de forma directa a las funciones básicas del suelo, acrecentando otros problemas como pueden ser la pérdida de biodiversidad, contaminación, degradación edáfica, inundaciones, o los efectos del cambio climático. En el área de estudio (Mazarrón, Región de Murcia) el problema anterior resulta ejemplar: el binomio desarrollo urbano asociado al turismo de sol y playa y la agricultura intensiva (bajo invernaderos) alteran de forma drástica la naturaleza del suelo. El objetivo es establecer un modelo de clasificación supervisada que distinga, con un error asumible, las distintas clases establecidas, destacando sobre todas ellas las que supongan superficies sellantes y, además, realizar una comparación con la información del último Corine Land Cover disponible (2018). Para ello, se seleccionaron imágenes del satélite Sentinel 2A y se ejecutó una clasificación de máxima verosimilitud. Para validar los resultados, se elaboró una matriz de confusión en la que se obtuvo una precisión general del 89 %. Finalmente, se observó una subestimación significativa, por parte del Corine Land Cover, del 75 % de las superficies selladas debido a su resolución.

Referencias bibliográficas

  • Amro, I., Mateos, J., Vega, M., Molina, R., & Katsaggelos, A.K. (2011). A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP Journal on Advances in Signal Processing, 2011(1), 1-22. https://doi.org/10.1186/1687-6180-2011-79
  • Anderson, J.R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
  • Araya, Y.H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549-1563. https://doi.org/10.3390/rs2061549
  • Arnfield, A.J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: a Journal of the Royal Meteorological Society, 23(1), 1-26. https://doi.org/10.1002/joc.859
  • Barreira González, P., González Cascon, V., & Bosque Sendra, J. (2012). Detección de errores temáticos en el CORINE Land Cover a través del estudio de cambios: Comunidad de Madrid (2000-2006). Estudios geográficos, 73(272), 7-34. https://doi.org/10.3989/estgeogr.201201
  • Borràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., & Camps-Valls, G. (2017). Clasificación de usos del suelo a partir de imágenes Sentinel-2. Revista de Teledetección, (48), 55-66. https://doi.org/10.4995/raet.2017.7133
  • Bossard, M., Feranec, J., & Otahel, J. (2000). CORINE land cover technical guide: Addendum 2000, 40. Copenhagen: European Environment Agency. https://www.eea.europa.eu/publications/tech40add
  • Casciere, R., Franci, F., & Bitelli, G. (2014). Use of Landsat imagery to detect land cover changes for monitoring soil sealing; case study: Bologna province (Italy). Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014). https://doi.org/10.1117/12.2066432
  • Chen, L., Zhang, M., Zhu, J., Wang, Y., & Skorokhod, A. (2018). Modeling impacts of urbanization and urban heat island mitigation on boundary layer meteorology and air quality in Beijing under different weather conditions. Journal of Geophysical Research: Atmospheres, 123(8), 4323-4344. https://doi.org/10.1002/2017JD027501
  • Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203-218. https://doi.org/10.1016/j.ejrs.2018.05.004
  • Congalton, R.G. (1988). A comparison of sampling schemes used in generating error matrices for assessing the accuracy of maps generated from remotely sensed data. Photogrammetric Engineering and Remote Sensing, 54(5), 593-600. https://scholars.unh.edu/faculty_pubs/1249/
  • Congalton, R.G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46. https://doi.org/10.1016/0034-4257(91)90048-B
  • Crutzen, P.J. (2006). The “Anthropocene”. In Earth system science in the anthropocene (pp. 13-18). Springer. https://doi.org/10.1007/3-540-26590-2_3
  • Curtis, K., & Youngquist, S.T. (2013). Part 21: categoric analysis: Pearson chi-square test. Air medical journal, 32(4), 179-180, https://doi.org/10.1016/j.amj.2013.04.007
  • Deng, J.S., Wang, K., Hong, Y., & Qi, J.G. (2009). Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and urban planning, 92(3-4), 187-198. https://doi.org/10.1016/j.landurbplan.2009.05.001
  • Díaz-Pacheco, J., & Gutiérrez, J. (2014). Exploring the limitations of CORINE Land Cover for monitoring urban land-use dynamics in metropolitan areas. Journal of Land Use Science, 9(3), 243-259. https://doi.org/10.1080/1747423X.2012.761736
  • Duarte, C.M., Alonso, S., Benito, G., Dachs, J., Montes, C., Pardo Buendía, M., Ríos, A.F., Simó, Rafel & Valladares, F. (2006). Cambio Global. Impacto de la actividad humana sobre el sistema Tierra. CSIC. http://hdl.handle.net/10016/8520
  • EEA (1995). CORINE Land Cover. https://www.eea.europa.eu/publications/COR0-landcover
  • EEA (2010). The European environment — state and outlook 2010: soil. European Environment Agency. http://dx.doi.org/10.2800/58866
  • EEA (2012). The state of soil in Europe. A contribution of the JRC to the EEA Environment State and Outlook Report — SOER2010. European Environment Agency, Joint Research Centre. https://doi.org/10.2788/75626
  • EEA (2021). Copernicus Land Monitoring Service: CORINE Land Cover. User Manual. European Union. https://land.copernicus.eu/user-corner/technical-library/clc-product-user-manual
  • Erener, A. (2013). Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection. International Journal of Applied Earth Observation and Geoinformation, 21, 397-408. https://doi.org/10.1016/j.jag.2011.12.008
  • European Space Agency (2015). Sentinel-2 User Handbook. https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
  • Ferreira, C.S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of the Total Environment, 805, 150106. https://doi.org/10.1016/j.scitotenv.2021.150106
  • Foody, G.M. (2002). Status of land cover classification accuracy assessment. Remote sensing of environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4
  • Foody, G.M. (2005). Local characterization of thematic classification accuracy through spatially constrained confusion matrices. International Journal of Remote Sensing, 26(6), 1217-1228. https://doi.org/10.1080/01431160512331326521
  • Foody, G.M. (2008). Harshness in image classification accuracy assessment. International Journal of Remote Sensing, 29(11), 3137-3158. https://doi.org/10.1080/01431160701442120
  • Foody, G.M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630
  • Fu, B., Meadows, M.E., & Zhao, W. (2021). Geography in the Anthropocene: Transforming our world for sustainable development. Geography and Sustainability, 3(1), 1-6. https://doi.org/10.1016/j.geosus.2021.12.004
  • García, P., & Pérez, E. (2016). Mapping of soil sealing by vegetation indexes and built-up index: A case study in Madrid (Spain). Geoderma, 268, 100-107. https://doi.org/10.1016/j.geoderma.2016.01.012
  • Gašparović, M., & Jogun, T. (2018). The effect of fusing Sentinel-2 bands on land-cover classification. International journal of remote sensing, 39(3), 822-841. https://doi.org/10.1080/01431161.2017.1392640
  • Goldewijk, K.K. (2001). Estimating global land use change over the past 300 years: the HYDE database. Global biogeochemical cycles, 15(2), 417-433. https://doi.org/10.1029/1999GB001232
  • Grullón, Y.R., Alhaddad, B., & Cladera, J.R. (2009, October). The analysis accuracy assessment of CORINE land cover in the Iberian coast. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX (Vol. 7478, p. 74781N). International Society for Optics and Photonics. https://doi.org/10.1117/12.830121
  • Hansen, A. J., DeFries, R. S., & Turner, W. (2012). Land use change and biodiversity. In Land change science (pp. 277-299). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2562-4_16
  • Hooke, R.L., Martín Duque, J.F., & Pedraza Gilsanz, J.D. (2013). Land transformation by humans: a review. Ene, 12(43). https://eprints.ucm.es/id/eprint/20528/
  • Ibarra Marinas, D., Belmonte Serrato, F., & Rubio Iborra, J. (2017). El impacto territorial del uso agrícola y turístico del litoral: evolución de los cambios de uso del suelo en las cuencas litorales del sur de la Región de Murcia (1956-2013). Boletín de la Asociación de Geógrafos Españoles, (73). https://doi.org/10.21138/bage.2419
  • Illán-Fernández, E.J., Pérez-Morales, A., & Romero-Díaz, A. (2022). El sellado antropogénico del suelo. Análisis bibliométrico. Cuadernos Geográficos, 61(1), 107-128. https://doi.org/10.30827/cuadgeo.v61i1.22293
  • Jacobson, C.R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of environmental management, 92(6), 1438-1448. https://doi.org/10.1016/j.jenvman.2011.01.018
  • Lambin, E.F., & Geist, H.J. (Eds.). (2008). Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media. https://doi.org/10.1007/3-540-32202-7
  • Lambin, E.F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465-3472. https://doi.org/10.1073/pnas.1100480108
  • Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
  • Lark, R.M. (1995). Components of accuracy of maps with special reference to discriminant analysis on remote sensor data. International Journal of Remote Sensing, 16(8), 1461-1480. https://doi.org/10.1080/01431169508954488
  • Loncan, L., De Almeida, L.B., Bioucas-Dias, J.M., Briottet, X., Chanussot, J., Fabre, S., Liao, W., Licciardi, G.A., Simoes, M., Tourneret, J.-Y., Veganzones, M.A., Vivone, G., Wei, Q., & Yokoya, N. (2015). Hyperspectral pansharpening: A review. IEEE Geoscience and remote sensing magazine, 3(3), 27-46. https://doi.org/10.1109/MGRS.2015.2440094
  • Martín-Górriz, B., Gallego-Elvira, B., Martínez-Alvarez, V., & Maestre-Valero, J.F. (2020). Life cycle assessment of fruit and vegetable production in the Region of Murcia (south-east Spain) and evaluation of impact mitigation practices. Journal of Cleaner Production, 265, 121656. https://doi.org/10.1016/j.jclepro.2020.121656
  • McGrane, S.J. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), 2295-2311. https://doi.org/10.1080/02626667.2015.1128084
  • McGwire K.C., & Fisher P. (2001). Spatially Variable Thematic Accuracy: Beyond the Confusion Matrix. In C.T. Hunsaker, M.F. Goodchild, M.A. Friedl & T.J. Case (Eds.), Spatial Uncertainty in Ecology. Springer. https://doi.org/10.1007/978-1-4613-0209-4_14
  • Meyer, W.B., & Turner, B.L. (1992). Human population growth and global land-use/cover change. Annual review of ecology and systematics, 23(1), 39-61. https://doi.org/10.1146/annurev.es.23.110192.000351
  • Meyer, W.B., & Turner, B.L. (1994). Changes in land use and land cover: a global perspective (Vol. 4). Cambridge University Press. https://doi.org/10.1002/ldr.3400060308
  • Miller, J.D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345-362. https://doi.org/10.1016/j.ejrh.2017.06.006
  • Mitsuda, Y., & Ito, S. (2011). A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landscape and Ecological Engineering, 7(1), 117-125. https://doi.org/10.1007/s11355-010-0113-4
  • Montanarella, L. (2007). Trends in land degradation in Europe. In Climate and land degradation (pp. 83-104). Springer. https://doi.org/10.1007/978-3-540-72438-4_5
  • Moore, A. (2016). Anthropocene anthropology: reconceptualizing contemporary global change. Journal of the Royal Anthropological Institute, 22(1), 27-46. https://doi.org/10.1111/1467-9655.12332
  • Naciones Unidas (2019). World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421). Department of Economic and Social Affairs, Population Division. https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf
  • Netzband, M., & Meinel, G. (1998). Identifying Urban Soil Sealing by High Resolution Remote Sensing Methods. In Urban Ecology (pp. 451-455). https://doi:10.1007/978-3-642-88583-9_91
  • Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., & Wulder, M.A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015
  • Pedraza, A.C., Díaz, A.R., & Soto, I.E. (2015). Cambios paisajísticos y efectos medioambientales debidos a la agricultura intensiva en la Comarca de Campo de Cartagena - Mar Menor (Murcia). Estudios geográficos, 76(279), 473-498. https://doi.org/10.3989/estgeogr.201517
  • Peduzzi, P. (2019). The disaster risk, global change, and sustainability nexus. Sustainability, 11(4), 957. https://doi.org/10.3390/su11040957
  • Pistocchi, A., Calzolari, C., Malucelli, F., & Ungaro, F. (2015). Soil sealing and flood risks in the plains of Emilia-Romagna, Italy. Journal of Hydrology: Regional Studies, 4, 398-409. https://doi.org/10.1016/j.ejrh.2015.06.021
  • Radoux, J., Bogaert, P., Fasbender, D., & Defourny, P. (2011). Thematic accuracy assessment of geographic object-based image classification. International Journal of Geographical Information Science, 25(6), 895-911. https://doi.org/10.1080/13658816.2010.498378
  • Rodríguez-Galiano, V.F., & Chica-Rivas, M. (2014). Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models. International Journal of Digital Earth, 7(6), 492-509. https://doi.org/10.1080/17538947.2012.748848
  • Rodríguez-Galiano, V., & Chica-Olmo, M. (2012). Land cover change analysis of a Mediterranean area in Spain using different sources of data: Multi-seasonal Landsat images, land surface temperature, digital terrain models and texture. Applied Geography, 35(1-2), 208-218. https://doi.org/10.1016/j.rse.2011.12.003
  • Romero Díaz, A., Caballero Pedraza, A., & Pérez Morales, A. (2017). Expansión urbana y turismo en la Comarca del Campo de Cartagena-Mar Menor (Murcia). Impacto en el sellado del suelo. Cuadernos de Turismo, (39), 521-546. https://doi.org/10.6018/turismo.39.290691
  • Rwanga, S.S., & Ndambuki, J.M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(04), 611-622. https://doi.org/10.4236/ijg.2017.84033
  • Sage, R.F. (2020). Global change biology: A primer. Global Change Biology, 26(1), 3-30. https://doi.org/10.1111/gcb.14893
  • Sánchez Muñoz, J.M. (2016). Análisis de calidad cartográfica mediante el estudio de la matriz de confusión. Pensamiento Matemático, 6(2), 9-26. https://dialnet.unirioja.es/servlet/articulo?codigo=5998855
  • Sánchez-Picón, A., Aznar-Sánchez, J.A., & García-Latorre, J. (2011). Economic cycles and environmental crisis in arid southeastern Spain. A historical perspective. Journal of arid environments, 75(12), 1360-1367. https://doi.org/10.1016/j.jaridenv.2010.12.014
  • Scalenghe, R., & Marsan, F.A. (2009). The anthropogenic sealing of soils in urban areas. Landscape and urban planning, 90(1-2), 1-10. https://doi.org/10.1016/j.landurbplan.2008.10.011
  • Shuster, W.D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D.R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4), 263-275. https://doi.org/10.1080/15730620500386529
  • Śleszyński, P., Gibas, P., & Sudra, P. (2020). The problem of mismatch between the CORINE Land Cover data classification and the development of settlement in Poland. Remote Sensing, 12(14), 2253. https://doi.org/10.3390/rs12142253
  • Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J., & Pugh, T.A.M. (2016). Global change pressures on soils from land use and management. Global change biology, 22(3), 1008-1028. https://doi.org/10.1111/gcb.13068
  • Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, P.V., Tyukavina, A., Vermote, E.F., & Townshend, J.R. (2018). Global land change from 1982 to 2016. Nature, 560(7720), 639-643. https://doi.org/10.1038/s41586-018-0411-9
  • Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., & Islam, T. (2012). Selection of classification techniques for land use/land cover change investigation. Advances in Space Research, 50(9), 1250-1265. https://doi.org/10.1016/j.asr.2012.06.032
  • Steffen, W., Grinevald, J., Crutzen, P., & McNeill, J. (2011). The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 842-867. https://doi.org/10.1098/rsta.2010.0327
  • Steffen, W., Sanderson, R.A., Tyson, P.D., Jäger, J., Matson, P.A., Moore III, B., Oldfield, F., Richardson, K., Schellnhuber, H.-J., Turner, B.L., & Wasson, R.J. (2006). Global change and the earth system: a planet under pressure. Springer Science & Business Media. https://doi.org/10.1007/b137870
  • Stehman, S.V. (2009). Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing, 30(20), 5243-5272. https://doi.org/10.1080/01431160903131000
  • Stehman, S.V., & Foody, G.M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018
  • Strahler, A.H., Boschetti, L., Foody, G.M., Friedl, M. A., Hansen, M. C., Herold, M., Mayaux, P., Morisette, J.T., Stehman, S.V., & Woodcock, C.E. (2006). Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps (Report of Institute of Environmental Sustainability). Joint Research Centre, European Commission, Ispra. https://gofcgold.umd.edu/sites/default/files/docs/ReportSeries/GOLD_25.pdf
  • Thépaut, J.N., Dee, D., Engelen, R., & Pinty, B. (2018). The Copernicus programme and its climate change service. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 1591-1593). IEEE. 10.1109/IGARSS.2018.8518067
  • Thomlinson, J.R., Bolstad, P.V., & Cohen, W.B. (1999). Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products. Remote Sensing of Environment, 70(1), 16-28. https://doi.org/10.1016/S0034-4257(99)00055-3
  • Tombolini, I., Munafò, M., & Salvati, L. (2016). Soil sealing footprint as an indicator of dispersed urban growth: a multivariate statistics approach. Urban Research & Practice, 9(1), 1-15. https://doi.org/10.1080/17535069.2015.1037340
  • Torrellas, M., Antón, A., López, J.C., Baeza, E. J., Parra, J.P., Muñoz, P., & Montero, J.I. (2012). LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. The International Journal of Life Cycle Assessment, 17(7), 863-875. https://doi.org/10.1007/s11367-012-0409-8
  • Unión Europea (2021). European Parliament resolution on soil protection (2021/2548(RSP), 28 April 2021, P9_TA(2021)0143. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021IP0143
  • Valera Lozano, A., Añó Vidal, C., & Sánchez Díaz, J. (2011). Crecimiento urbano (1956-2005) y sellado antropogénico del suelo en el municipio de Alacant. Serie Geográfica, (17), 97-108. https://digital.csic.es/handle/10261/43161
  • van Vliet, J., Bregt, A.K., & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological modelling, 222(8), 1367-1375. https://doi.org/10.1016/j.ecolmodel.2011.01.017
  • Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam med, 37(5), 360-363. http://www1.cs.columbia.edu/~julia/courses/CS6998/Interrater_agreement.Kappa_statistic.pdf
  • Vitousek, P.M., Mooney, H.A., Lubchenco, J., & Melillo, J.M. (1997). Human domination of Earth's ecosystems. Science, 277(5325), 494-499. https://doi.org/10.1126/science.277.5325.494
  • Wickham, J., Stehman, S.V., Gass, L., Dewitz, J.A., Sorenson, D.G., Granneman, B.J., Poss, R.V., & Baer, L.A. (2017). Thematic accuracy assessment of the 2011 national land cover database (NLCD). Remote Sensing of Environment, 191, 328-341. https://doi.org/10.1016/j.rse.2016.12.026
  • Xiao, R., Su, S., Zhang, Z., Qi, J., Jiang, D., & Wu, J. (2013). Dynamics of soil sealing and soil landscape patterns under rapid urbanization. Catena, 109, 1-12. https://doi.org/10.1016/j.catena.2013.05.004
  • Zhang, N., Gao, Z., Wang, X., & Chen, Y. (2010). Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theoretical and applied climatology, 102(3), 331-342. https://doi.org/10.1007/s00704-010-0263-1