Smart AdvertisingInnovación y disrupción tecnológica asociadas a la IA en el ecosistema publicitario

  1. Inmaculada José Martínez Martínez
  2. Martínez Martínez, Inmaculada José 1
  3. Sánchez Cobarro, Paloma del Henar
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Revista Latina de Comunicación Social

ISSN: 1138-5820

Año de publicación: 2022

Número: 80

Tipo: Artículo

DOI: 10.4185/10.4185/RLCS-2022-1693 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Revista Latina de Comunicación Social

Resumen

Introduction: The impact of artificial intelligence (AI) in media industries has received increasing attention in recent years. Research literature in this regard has focused on content production and distribution sectors, leaving advertising in a discreet background. This article aims to take the study of AI and advertising to the forefront, identifying the scope of current research on the subject and offering a map of the research trends, drawing them as a key vector of technology-based innovation in the media ecosystem. Methodology: In order to do so, a qualitative scoping review of the current research literature on AI and advertising has been developed, completed by the contribution of professional reports from the sector. Results and discussion: The existing literature points to the efficiency in large unstructured data sets processing, predictive / prescriptive analysis, natural language recognition and image recognition, as automation as the main AI innovation vectors. The disruptive impact of AI affects all phases of the advertising process: market research and analysis, creativity, media planning and buying, and effectiveness evaluation. Conclusions: Research tends to perpetuate the traditional structure of the advertising process and obviates the ecosystem dimension of innovation, which transforms actors and their relationships.

Referencias bibliográficas

  • Acquisti, A., Taylor, C., y Wagman, L. (2016). «The economics of privacy». Journal of Economic Literature, 54(2), 442-92. https://doi.org/10.1257/jel.54.2.442
  • Adform (2019) Fact or fiction? The threat of cookie Apocalypse. IAB Europe whitepaper. https://iabeurope.eu/wp-content/uploads/2019/11/Fact-or-Fiction-The-threat-of-a-Cookie-Apocalypse.pdf
  • Albinali, E. A. y Hamdan, A. (2020, November). The implementation of artificial intelligence in social media marketing and its impact on consumer behavior: evidence from Bahrain. International Conference on Business and Technology (pp. 767-774). Springer, Cham. https://doi.org/10.1007/978-3-030-69221-6_58
  • Ahn, J. B. (2020). A Study on Advertising Future Development Roadmap in the Fourth Industrial Revolution Era. International Journal of Internet, Broadcasting and Communication, 12(2), 66-76. https://doi.org/10.7236/IJIBC.2020.12.2.66
  • Ali, W. y Hassoun, M. (2019). Artificial intelligence and automated journalism: Contemporary challenges and new opportunities. International journal of media, journalism and mass communications, 5(1), 40-49. http://dx.doi.org/10.20431/2454-9479.0501004
  • Arvidsson, A. y Colleoni, E. (2012). Value in Informational Capitalism and on the Internet. The Information Society, 28(3), 135-150. https://doi.org/10.1080/01972243.2012.669449
  • Allam, S. (2016). The Impact of Artificial Intelligence on Innovation-An Exploratory Analysis. International Journal of Creative Research Thoughts (IJCRT), ISSN, 2320-2882. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3821173
  • Barker, A. (2020) “’Cookie Apocalypse’ forces profound changes in online advertising”, Financial Times, 02/26/2020 https://www.ft.com/content/169079b2-3ba1-11ea-b84f-a62c46f39bc2
  • Bradley, S. (2021). “Could AI product placement help brands break through the ad break?” The Drum, 05/05/2021. https://www.thedrum.com/news/2021/05/05/could-ai-product-placement-help-brands-break-through-the-ad-break
  • Buckley, D. (2021). Privacy enhancing technologies for trustworthy use of data. Centre for Data Ethics and Innovation, Reino Unido. https://cdei.blog.gov.uk/2021/02/09/privacy-enhancing-technologies-for-trustworthy-use-of-data/
  • Busch, O. (2019) Programmatic Advertising. The Successful Transformation to Automated, Data-Driven Marketing in Real-Time. Berlin, Springer.
  • Campbell, C., Plangger, K., Sands, S. y Kietzmann, J. (2021). Preparing for an era of deepfakes and AI-generated ads: A framework for understanding responses to manipulated advertising. Journal of Advertising, 1-17. https://doi.org/10.1080/00913367.2021.1909515
  • Carrillo-Durán, M. V. y Rodríguez-Silgado, A. (2018). El ecosistema programático. La nueva publicidad digital que conecta datos con personas. El profesional de la información, 27(1), 195-201. https://doi.org/10.3145/epi.2018.ene.18
  • Chen, G., Xie, P., Dong, J. y Wang, T. (2019). Understanding programmatic creative: The role of AI. Journal of Advertising, 48(4), 347-355. https://doi.org/10.1080/00913367.2019.1654421
  • Christiansen, L. (2011). Personal privacy and internet marketing: an impossible conflict or a marriage made in heaven?. Business horizons, v. 54, n. 6, pp. 509-514.
  • Cillo, V., Petruzzelli, A. M., Ardito, L. y Del Giudice, M. (2019). Understanding sustainable innovation: A systematic literature review. Corporate Social Responsibility and Environmental Management, 26(5), 1012-1025. https://doi.org/10.1002/csr.1783
  • Codina, Lluís (2020). Revisiones sistematizadas en Ciencias Humanas y Sociales. 3: Análisis y Síntesis de la información cualitativa. En: Lopezosa C., Díaz-Noci J., Codina L. (Eds.) Methodos Anuario de Métodos de Investigación en Comunicación Social, 1. Barcelona: Universitat Pompeu Fabra; 2020. p. 73-87. https://doi.org/10.31009/methodos.2020.i01.07
  • Duan, C., & Yang, H. (2018). Data, Algorithmic Model, and Decision-Making: The Development of Computational Advertising. Journalism Bimonthly, 2018(1), 128-136. https://en.cnki.com.cn/Article_en/CJFDTotal-XWDX201801017.htm
  • Enache, M. C. (2020). AI for Advertising. Annals of the University Dunarea de Jos of Galati: Fascicle: I, Economics & Applied Informatics, 26(1). https://doi.org/10.35219/eai1584040978
  • EU (2021). The Digital Services Act Package. https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
  • Grant, Maria J. y Booth, Andrew (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, 26, pp.91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
  • Hancock, J. T., Naaman, M. y Levy, K. (2020). AI-mediated communication: definition, research agenda, and ethical considerations. Journal of Computer-Mediated Communication, 25(1), 89-100. https://doi.org/10.1093/jcmc/zmz022
  • Helberger, N., Huh, J., Milne, G., Strycharz, J. y Sundaram, H. (2020). Macro and exogenous factors in computational advertising: Key issues and new research directions. Journal of Advertising, 49(4), 377-393. https://doi.org/10.1080/00913367.2020.1811179
  • Hill, R. K. (2016). What an algorithm is. Philosophy & Technology, 29(1), 35-59. https://doi.org/10.1007/s13347-014-0184-5
  • Huang, M. H. y Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30-50. https://doi.org/10.1007/s11747-020-00749-9
  • Houle, O. y Mauss, J.C. (2021) The Impact of Cookie Apocalypse on Digital Media. Ads. https://www.adviso.ca/en/blog/guides-en/attribute-measure-retarget/
  • ICO (2019). Update Report into Adtech and Real Time Bidding. June, 20, 2019. https://ico.org.uk/media/about-the-ico/documents/2615156/adtech-real-time-bidding-report-201906-dl191220.pdf
  • Kietzmann, J., Paschen, J. y Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263-267. https://doi.org/10.2501/JAR-2018-035
  • Koren, Y., Somekh, O., Shahar, A., Itzhaki, A., Cohen, T., Krasteva, M. y Shadi, T. (2020). Dynamic Creative Optimization in Verizon Media Native Advertising. En: 2020 IEEE International Conference on Big Data (Big Data) (pp. 1654-1662). IEEE. https://doi.org/10.1109/BigData50022.2020.9378251
  • Kumar, V., & Shaphali G. (2016). Conceptualizing the Evolution and Future of Advertising, Journal of Advertising, 45 (3), 302–17. https://doi.org/10.1080/00913367.2016.1199335
  • Kumar, V., Rajan, B., Venkatesan, R., y Lecinski, J. (2019). Understanding the role of artificial intelligence in personalized engagement marketing. California Management Review, 61(4), 135-155. https://doi.org/10.1177/0008125619859317
  • Lee, H. y Cho, C. H. (2020). Digital advertising: present and future prospects. International Journal of Advertising, 39(3), 332-341. https://doi.org/10.1080/02650487.2019.1642015
  • Lee, J., Suh, T., Roy, D. y Baucus, M. (2019). Emerging technology and business model innovation: the case of artificial intelligence. Journal of Open Innovation: Technology, Market, and Complexity, 5(3), 44. https://doi.org/10.3390/joitmc5030044
  • Li, H. (2019). Special section introduction: Artificial intelligence and advertising. Journal of advertising, 48(4), 333-337. https://doi.org/10.1080/00913367.2019.1654947
  • Liu, X. (2019), A big data approach to examining social bots on Twitter. Journal of Services Marketing, 33 (4), 369-379. https://doi.org/10.1108/JSM-02-2018-0049
  • Malthouse, E. C. y Li, H. (2017) Opportunities for and Pitfalls of Using Big Data in Advertising Research, Journal of Advertising, 46:2, 227-235, https://doi.org/10.1080/00913367.2017.1299653
  • Malthouse, E. C., Maslowska, E., y Franks, J. U. (2018). Understanding programmatic TV advertising. International Journal of Advertising, 37(5), 769-784. https://doi.org/10.1080/02650487.2018.1461733
  • Manfredi, J. L. y Ufarte, M. J. (2020). Inteligencia artificial y periodismo: una herramienta contra la desinformación. Revista CIDOB d'Afers Internacionals, 49-72. https://doi.org/10.24241/rcai.2020.124.1.49
  • Martínez, I. J., Aguado, J. M. y Boeykens, Y. (2017). Implicaciones éticas de la automatización de la publicidad digital: caso de la publicidad programática en España. Profesional de la Información, 26(2), 201-210. http://www.elprofesionaldelainformacion.com/contenidos/2017/mar/06.pdf
  • Martínez, I.J. y Aguado, J.M. (2019). El impacto de la tecnología digital en el sector publicitario. Universidad de Murcia. https://doi.org/10.5281/zenodo.3737948
  • Mittelstadt, B. D.; Allo, P.; Taddeo, M.; Wachter, S. y Floridi, L. (2016). «The ethics of algorithms: Mapping the debate». Big Data & Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679
  • Napoli, P. M. (2014). Automated media: An institutional theory perspective on algorithmic media production and consumption. Communication Theory, 24(3), 340–360. https://doi.org/10.1111/comt.2014.24.issue-3
  • Qin, X. y Jiang, Z. (2019). The impact of AI on the advertising process: The Chinese experience. Journal of Advertising, 48(4), 338-346. https://doi.org/10.1080/00913367.2019.1652122
  • Palomo-Domínguez, I. (2021). Del mito a la viralidad. El caso de la campaña de Cruzcampo que resucitó a Lola Flores. aDResearch ESIC 26, e262. https://doi.org/10.7263/adresic-026-02
  • Pärssinen, M.; Kotila, M.; Cuevas, R.; Phansalkar, A. y Manner, J. (2018). Is Blockchain Ready to Revolutionize Online Advertising?. IEEE Access. pp. 1-1. https://doi.org/10.1109/ACCESS.2018.2872694
  • Paschen, U., Pitt, C. y Kietzmann, J. (2020). Artificial intelligence: Building blocks and an innovation typology. Business Horizons, 63(2), 147-155. https://doi.org/10.1016/j.bushor.2019.10.004
  • Rodgers, S (2021) Themed Issue Introduction: Promises and Perils of Artificial Intelligence and Advertising, Journal of Advertising, 50:1, 1-10, https://doi.org/10.1080/00913367.2020.1868233
  • Rodrigo-Martín, L., Rodrigo-Martín, I. y Muñoz-Sastre, D. (2021). Los Influencers Virtuales como herramienta publicitaria en la promoción de marcas y productos. Estudio de la actividad comercial de Lil Miquela. Revista Latina de Comunicación Social, (79), 69-90. https://doi.org/10.4185/RLCS-2021-1521
  • Shumanov, M., Cooper, H. y Ewing, M. (2021), "Using AI predicted personality to enhance advertising effectiveness", European Journal of Marketing, pre-print. https://doi.org/10.1108/EJM-12-2019-0941
  • Skiera, B. (2016), Data, Data, and Even More Data: Harvesting Insights from the Data Jungle, GfK Marketing Intelligence Review, 8 (2), 10–17. https://doi.org/10.1515/gfkmir-2016-0010
  • Song, M. (2019). A Study on Artificial Intelligence Based Business Models of Media Firms. International Journal of Advanced Smart Convergence, 8(2), 56-67. https://doi.org/10.7236/IJASC.2019.8.2.56
  • Thomas, V. L. y Fowler, K. (2021). Close encounters of the AI kind: Use of AI influencers as Brand endorsers. Journal of Advertising, 50(1), 11-25. https://doi.org/10.1080/00913367.2020.1810595
  • Túñez-López, J. M., Toural-Bran, C. y Cacheiro-Requeijo, S. (2018). Uso de bots y algoritmos para automatizar la redacción de noticias: percepción y actitudes de los periodistas en España. El Profesional de la Información, 27(4), 750-758. https://doi.org/10.3145/epi.2018.jul.04
  • Vakratsas, D. y Wang, X. (2020). Artificial intelligence in advertising creativity. Journal of Advertising, 50(1), 39-51. https://doi.org/10.1080/00913367.2020.1843090
  • Watts, J. y Adriano, A. (2021). Uncovering the sources of machine-learning mistakes in advertising: Contextual bias in the evaluation of semantic relatedness. Journal of Advertising, 50(1), 26-38. https://doi.org/10.1080/00913367.2020.1821411
  • Yang, Y., Yang, Y. C., Jansen, B. J. y Lalmas, M. (2017). Computational advertising: A paradigm shift for advertising and marketing?. IEEE Intelligent Systems, 32(3), 3-6. https://doi.org/10.1109/MIS.2017.58