Aspectos biomecánicos del patinaje hacia delante en hockey líneaActivación muscular y rango de movimiento articular

  1. Moreno-Alcaraz, V.J. 1
  2. Cejudo, A.
  3. Sainz de Baranda, P.
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Trances: Transmisión del conocimiento educativo y de la salud

ISSN: 1989-6247

Año de publicación: 2022

Volumen: 14

Número: 1

Páginas: 21-36

Tipo: Artículo

Otras publicaciones en: Trances: Transmisión del conocimiento educativo y de la salud

Resumen

El patinaje es considerado por muchos entrenadores como la técnica más importante para el rendimiento en hockey línea. Actualmente, la información sobre aspectos biomecánicos de esta técnica fundamental en hockey línea es muy escasa o casi inexistente. El objetivo de este estudio fue identificar las articulaciones, rangos de movimiento articular y la musculatura implicadas durante el patinaje hacia delante en hockey línea. Se llevó a cabo una revisión sobre análisis biomecánicos de patinaje realizados en hockey sobre hielo y patinaje sobre hielo. La mayor frecuencia y mayor potencia de impulso tienen mayor influencia en la velocidad de patinaje que el mayor rango de movimiento articular (ROM). Es necesaria la realización de futuros estudios que aporten datos sobre aspectos biomecánicos del patinaje en hockey línea.

Referencias bibliográficas

  • 1. Asplund, C., & St Pierre, P. (2004). Knee pain and bicycling. Fitting concepts for clinicians. The Physician and Sportsmedicine, 32(4), 23-30.
  • 2. Bracko, M.R. (2004). Biomechanics powers ice hockey performance. Biomechanics, 47-53.
  • 3. Buckeridge, E., LeVangie, M.C., Stetter, B., Nigg, S.R., & Nigg, B.M. (2015). An on-ice measurement approach to analyse the biomechanics of ice hockey skating. PLoS ONE, 10(5): e0127324. doi:10.1371/journal.pone.0127324
  • 4. Cejudo, A., Moreno-Alcaraz, V.J., De Ste Croix, M., Santonja-Medina, F. & Sainz de Baranda, P. (2020b). Lower-limb flexibility profile analysis in youth competitive inline hockey players. International Journal of Environmental Research and Public Health, 17, 4338; doi:10.3390/ijerph17124338
  • 5. Cejudo, A., Moreno-Alcaraz, V.J., Izzo, R., Robles-Palazón, R.J., Sainz de Baranda, P. & Santonja-Medina, F. (2020a). Flexibility in Spanish Elite inline hockey players: profile, sex, tightness and asymmetry. International Journal of Environmental Research and Public Health, 17, 3295; doi:10.3390/ijerph17093295.
  • 6. Cejudo, A., Moreno-Alcaraz, V.J., Izzo, R., Sainz de Baranda, P. & Santonja-Medina, F. (2020c). External and total hip rotation ranges of motion predispose to low back pain in Elite Spanish inline hockey players. International Journal of Environmental Research and Public Health, 17, 4858 ; doi:10.3390/ijerph17134858
  • 7. Chang, R., Turcotte, R., & Pearsall, D. (2009). Hip adductor muscle function in forward skating. Sports Biomechanic, 8(3), 212-222.
  • 8. Clarsen, B., Krosshaug, T., & Bahr, R. (2010). Overuse injuries in professional road cyclists. American Journal of Sports Medicine, 38(12), 2494-2501.
  • 9. De Koning, J.J., De Groot, G., & Van Ingen, G.J. (1991a). Coordination of leg muscles during speed skating. Journal Biomechanics, 24(2), 137- 146.
  • 10. De Koning, J.J., De Groot, G., & van Ingen, G.J. (1991b). Speed skating the curves: A study of muscle coordination and power production. International Journal of Sport Biomechanics, 7, 344-358.
  • 11. Ferber, R., Davis, I.M., & Williams, D.S. (2003). Gender differences in lower extremity mechanics during running. Clinical Biomechanics, 18, 350-357.
  • 12. Fucci, S., Benigni, M., & Fornasari, V. (1988). Biomecánica del aparato locomotor aplicada al acondicionemiento muscular. Harcourt Brace. Madrid.
  • 13. Goudreault, R. (2002). Forward skating in ice hockey: comparison of EMG activation patterns of at three velocities using a skate treadmill. (Master’s thesis). McGill University, Canada.
  • 14. Goudreault, R. (2002). Forward skating in ice hockey: comparison of EMG activation patterns of at three velocities using a skate treadmill. (Master’s thesis). McGill University, Canada
  • 15. Hay, J.G. (1993). Biomechanics of sports techniques, 4th ed. Englewood Cliffs, New Jersey. Prentice-Hall.
  • 16. Kapandji, I.A. (1993). Cuadernos de Fisiología Articular. Tronco y raquis. (Tomo 3º). Barcelona: Masson.
  • 17. Kawałek, K., & Garsztka, T. (2013). An analysis of muscle balance in professional field hockey players. Trend in Sport Sciences, 4(20), 181- 187.
  • 18. Marino, G.W. (1977). Kinematics of ice skating at different velocities. Research Quarterly for Exercise and Sport, 48(1), 93-97.
  • 19. Marino, G.W. (1983). Selected mechanical factors associated with acceleration in ice skating. Research Quarterly for Exercise and Sport, 54(3), 234-238.
  • 20. Marino, G.W., & Grasse, J. (1993). Analysis of Selected Mechanics of the Backward CCut Ice Skating Stride. En: Biomechanics in Sports X. J. Hammill et al. (eds.). University of Amherst, Massachusetts, USA: Massachusetts Press.
  • 21. Marino, G.W., Hermiston, R.T., & Hoshizaki, T.B. (1989). Power and strength profiles of elite 16-20 years old ice hockey players. En Tsarouchas, L., Terauds, J. Gowitzke, B.A. & Holt, L.A (eds). Biomechanics in Sport V: Proceedings of ISBS (pp. 314-321). Atenas, Grecia: Hellenic Sports Research Institute.
  • 22. McCaw, S.T., & Hoshizaki, T.B. (1987). A kinematic comparison of novice, intermediate, and elite ice skaters. En Johsson, M. (ed.), Biomechanics X-B (pp. 637-642). Champaing: Human Kinetics.
  • 23. McPherson, M.N., Wrigley, A., & Montelpare, W.J. (2004). The biomechanical characteristics of development age hockey players: Determining the effects of body size on the assessment of skating technique. En J. Terauds & H.J. Gros (eds.) (pp. 637-642). Champaing: Human Kinetics.
  • 24. Minkoff, J., Varlotta, G., & Simonson, B. (1994). Ice hockey. En Freddie H. Fu, y David A. Stone, (eds.). Sports injuries: mechanisms, prevention, treatment (pp. 397-444), Baltimor, USA: Lippincott, Williams & Wilkins.
  • 25. Moore, K.L., & Agur, A.M.R. (1998). Compendio de anatomía con orientación clínica. MASSON-Williams & Wilkins. Barcelona.
  • 26. Page, P. (1975). Biomechanics of forward skating in ice hockey (master´s thesis), Dalhousie University, Halifax, Nova Scotia, Canada.
  • 27. Pearsall, DJ., Turcotte, RA., & Murphy, SD. (2000). Biomechanics of ice hockey. En W.E. Garrett and D.T. Kirkendall (Ed.), Exercise and Sport Science (pp. 675-691). Philadelphia, USA: Williams & Wilkins.
  • 28. Renaud, P., Robbins, S.M.K., Dixon, P.C., Shell, J.R., Turcotte, R.A., & Pearsall, D.J. (2017). Ice hockey skate starts: A comparison of high and low caliber skaters. Sports Engineering, doi:10.1007/s12283-017-0227-0.
  • 29. Shell, J.R., Robbins, S.M.K., Dixon P.C., Renaud, P.J., Trcotte, R.A. Wu T., & Pearsall, D.J. (2017). Skating start propulsion: three-dimensional kinematic analysis of elite male and female ice hockey players. Sports Biomechanics, 16(3), 313-324.
  • 30. Upjohn, T., Turcotte, R., Pearsall D.J., & Loh, J. (2008). Threedimensional kinematics of the lower limbs during forward ice hockey skating. Sports Biomechanic, 7(2), 206-221.
  • 31. Van Ingen, G.J., DeGroot, G., Secheurs, A.W., Meester, H., & Koning, J.J. (1996). A new skate allowing powerful plantar flexion improves performance. Medicine Science of Sports Exercise, 28(4), 531-535.
  • 32. Wang, S.S., Whitney, S.L., Burdett, R.G., & Janosky J.E. (1993). Lower extremity muscular flexibility in long distance runners. The Journal of Orthopaedic and Sports Physical Therapy, 17(2), 102-107