Efecto de la subdivisión de cuencas y la estimación de variables climáticas en la simulación de componentes de balance hídrico en cuencas semiáridas mediterráneas

  1. Francisco Gomariz Castillo 1
  2. Francisco Alonso Sarría 2
  1. 1 Instituto Euromediterráneo del Agua, CARM / Instituto Universitario del Agua y del Medio Ambiente, Universidad de Murcia
  2. 2 Instituto Universitario del Agua y del Medio Ambiente, Universidad de Murcia
Revista:
Papeles de geografía

ISSN: 0213-1781

Ano de publicación: 2018

Número: 64

Páxinas: 114-133

Tipo: Artigo

Outras publicacións en: Papeles de geografía

Resumo

The results of hydrological modelling depend on the quality and spatial resolution of the input data. This paper evaluates how the use of different estimations of climatic variables input layers (precipitation and ETP) and different basin discretization schemes influence affect the results of a contrasted hydrological model (SWAT). Specifically, 4 sets of input and discretization variables are tested. The statistics used to evaluate the accuracy obtained with these sets are RMSE, PBIAS, NSE and r2. The results show that the use of better models to obtain ETP series (Penman Monteith FAO or calibrated Hargreaves) considerably improves the accuracy of the model compared to the series obtained with the uncalibrated Hargreaves model (default option in SWAT). However, there is no difference between the results obtained with Penman Monteith FAO and calibrated Hargreaves. On the other hand, the use of distributed climate information significantly improves the results obtained with aggregated information. There is also a need to calibrate SWAT parameters as the default values are optimized for temperate environments in the USA

Referencias bibliográficas

  • ABBASPOUR, K.C., ROUHOLAHNEJAD, E., VAGHEFI, S., SRINIVASAN, R., YANG, H. y KLØVE, B. (2015): “A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model”. Journal of Hydrology, vol. 524, p. 733–752.
  • ABBASPOUR, K.C., YANG, J., MAXIMOV, I., SIBER, R., BOGNER, K., MIELEITNER, J., ZOBRIST, J. y SRINIVASAN, R. (2007): “Modelling hydrology and water quality in the prealpine/alpine Thur watershed using SWAT”. Journal of Hidrology, vol. 333, p. 413–430.
  • ALLEN, R.G. (1986): “A Penman for all seasons”. Journal of Irrigation and Drainage Engineering, vol. 112, p. 348–368.
  • ALLEN, R.G., SMITH, M., PERRIE, M. y PEREIRA, L.S. (1994): “An update for the calculation of reference evapotranspiration”. ICID Bulletin, vol. 43, nº 2, p. 35–92.
  • ALLEN R.G., PEREIRA, L.S., RAES, D. Y MARTIN S. (1998). “Crop evapotranspiration - Guidelines for computing crop water requirements”. FAO Irrigation and drainage paper 56, FAO, Rome.
  • ARNOLD, J.G., ENGEL, B.A. y SRINIVASAN, R. (1993): Application of Advanced Information Technologies for Management of Natural Resources. “A continuous time, grid cell watershed model”. En ASAE (Ed.) , Spokane, Washington, pp. 17–19.
  • ARNOLD, J.G., SRINIVASAN, R., MUTTIAH, R.S. y WILLIAMS, J.R. (1993): “Large area hydrologic modeling and assessment part I: Model development”. JAWRA Journal of the American Water Resources Association,, vol. 34, p. 73–89.
  • Boletín Oficial del Estado (2007): “Acuerdo para encomienda de gestión por el MAAMA (Dirección General del Agua) al CEDEX, del Ministerio de Fomento, para la realización de asistencia técnica, investigación y desarrollo tecnológico en materias competencia de la Dirección General del Agua”. Boletín Oficial del Estado, Gobierno de España. Madrid.
  • BRU RONDA, C. (1993): “La sobreexplotación de acuíferos y los planes de ordenación hidráulica en la cuenca del río Vinalopó, Alicante”. Investigaciones Geográficas, vol. 11, p. 93–107.
  • Confederación Hidrográfica del Júcar (2015): Plan Hidrológico de La Demarcación Hidrográfica Del Júcar. Memoria. Ciclo de Planificación Hidrológica 2015-2021. Confederación Hidrográfica del Júcar, Gobierno de España. Madrid, 896 pp.
  • CHIANG, L.C. y YUAN, Y. (2015): “The NHDPlus dataset, watershed subdivision and SWAT model performance”. Hydrological Sciences Journal, vol. 60, p. 1690–1708.
  • CUNGE, J.A. (1969). “On the subject of a flood propagation method (Muskingum method)”. Journal of Hydraulics Research, vol. 7, p. 205–230.
  • DILE, Y.T., DAGGUPATI, P., GEORGE, C., SRINIVASAN, R. y ARNOLD, J. (2016): “Introducing a new open source GIS user interface for the SWAT model”. Environmental Modelling and Software, vol. 85, p. 129–138.
  • DONG, X. (2013): Conference Proceedings of SWAT 2013. “Moulding SWAT model for Chines Qingjiang river for rainfall-runoff simulations”. Texas Water Resources Institute Technical Report.
  • DOUGLAS-MANKIN, K.R., SRINIVASAN, R. y ARNOLD, J.G. (2010): “Soil and water assessment tool (SWAT) model: Current developments and applications”. Transactions of the ASABE, vol. 53, nº 5, p. 1423–1431.
  • ESTRELA, T. y QUINTAS, L. (1996): “El sistema integrado de modelización precipitaciónaportación SIMPA”. Ingeniería Civil, vol. 104, p. 43–52.
  • FAO, IIASA, ISRIC, ISSCAS y JRC. (2012): Harmonized World Soil Database (vs 1.2), FAO, Rome, Italy and IIASA. Laxenburg, Austria.
  • GASSMAN, P.W., REYES, M.R., GREEN, C.H. y ARNOLD, J.G. (2007): “The Soil and Water Assesment Tool: historical development, applications and future research directions”. Transactions of the ASAE, vol. 50, p. 1221–1250.
  • GITHUI, F. y THAYALAKUMARAN, T. (2011): 1The 19th International Congress on Modelling and Simulation. “The effect of discretization of hydrologic response units on the performance of SWAT model in simulating flow and evapotranspiration”. En Wongsosaputro, J., Pauwels, L.L. y Chan, F. (Ed.). Perth, Australia, pp. 3412–3418.
  • GOMARIZ-CASTILLO, F. y ALONSO-SARRÍA, F. (2013): The 9th International R User Conference. “An R script to model monthly climatic variables with GLM to be used in hydrological modeling in River Segura basin”. University of Castilla-La Mancha, Albacete, Castilla-La Mancha.
  • GOMARIZ-CASTILLO, F., ALONSO-SARRÍA, F. y CABEZAS, F. (2017a): “Calibration and spatial modelling of daily ET0 in semiarid areas using Hargreaves equation”. Earth Science Information, En prensa, p. 1–16.
  • GOMARIZ-CASTILLO, F., ALONSO-SARRÍA, F. y CÁNOVAS-GARCÍA, F. (2017b): “Improving Classification Accuracy of Multi-Temporal Landsat Images by Assessing the Use of Different Algorithms, Textural and Ancillary Information for a Mediterranean Semiarid Area from 2000 to 2015”. Remote Sensing, vol. 9, nº 10, p. 1–23.
  • GONG, Y., SHEN, Z., LIU, R., WANG, X. y CHEN, T. (2010): “Effect of Watershed Subdivision on SWAT Modeling with Consideration of Parameter Uncertainty”. Journal of Hydrologic Engineering, vol. 15, p. 1070–1074.
  • GRUSSON, Y., ANCTIL, F., SUVAGE, S., SÁNCHEZ PÉREZ, J.M. (2017): “Testing the SWAT Model with Gridded Weather Data of Different Spatial Resolutions”. Water, vol. 9, nº de artículo 54.
  • HARGREAVES, G.H. y ALLEN, R.G. (2003): “History and evaluation of Hargreaves evapotranspiration equation”. Journal of Irrigation and Drainage Engineering-Asce, vol. 129, p. 53–63.
  • HARGREAVES, G.H. y SAMANI, Z.A. (1985): “Reference crop evapotranspiration from temperature”. Applied Engineering in Agriculture, vol. 1, p. 96–99.
  • JAJARMIZADEH, M., SIDEK, L.M., HARUN, S. y SALARPOUR, M. (2017): “Optimal Calibration and Uncertainty Analysis of SWAT for an Arid Climate”. Air, Soil and Water Research, vol 10, p. 1–14.
  • JHA, M., GASSMAN, P.W., SECCHI, S., GU, R. y ARNOLD, J. (2004): “Effect of watershed subdivision on swat flow, sediment, y nutrient predictions”. Journal of the American Water Resources Association, vol. 40, p. 811–825.
  • KUMAR, M., BHATT, G. y DUFFY, C.J. (2009): “An efficient domain decomposition framework for accurate representation of geodata in distributed hydrologic models”. International Journal of Geographical Information Science, vol. 23, p. 1569–1596.
  • LEGATES, D.R. y MCCABE, G.J. (1999): “Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation”. Water Resources, vol. 35, p. 233–241.
  • MALAGÒ, A., PAGLIERO, L., BOURAOUI, F. y FRANCHINI, M. (2015): “Comparing calibrated parameter sets of the SWAT model for the Scandinavian and Iberian peninsulas”. Hydrological Sciences Journal, vol. 60, p. 949–967.
  • MONTEITH, J.L. (1993): The State and Movement of Water in Living Organisms. 19 Symposia of the Society for Experimental Biology. “Evaporation and the environment”. Cambridge Univ. Press. London, U.K., pp. 205–234.
  • MORIASI, D.N., ARNOLD, J.G., VAN-LIEW, M.W., BINGNER, R.L., HARMEL, R.D. y VEITH, T.L. (2007): “Model evaluation guidelines for systematic quantification of accuracy in whatershed simulations”. Transactions of the ASAE, vol. 50, p. 885–900.
  • MUKUNDAN, R., RADCLIFFE, D.E. y RISSE, L.M. (2010): “Spatial resolution of soil data and channel erosion effects on SWAT model predictions of flow and sediment”. Journal of Soil and Water Conservation, vol. 65, p. 92–104.
  • NASH, J.E. y SUTCLIFFE, J. V. (1970): “River flow forecasting through conceptual models part I-A discussion of principles”. Journal of Hydrology, vol. 10, p. 282–290.
  • NEITSCH, S.L., ARNOLD, J.G., KINIRY, J.R. y WILLIAMS, J.R. (2011): Soil and Water Assessment Tool. Theoretical Documentation. Version 2009, Texas Water Resources Institute. Temple, Texas, pp. 618.
  • O’CALLAGHAN, J.F. y MARK, D.M. (1984): “The extraction of drainage networks from digital elevation data”. Comp. Vision, Graphics and Image Processing, vol. 28, p. 328–344.
  • SAXTON, K. E. y RAWLS, W.J. (2006): “Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions”. Soil Science Society of America Journal, vol. 70, p. 1569–1578.
  • TEGEGNE, G., PARK, D.K y KIM, Y-O. (2017): “Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin”. Journal of Hydrology: Regional Studies, vol. 14, p. 49–66.
  • TRIPATHI, M.P., RAGHUWANSHI, N.S. y RAO, G.P. (2006): “Effect of watershed subdivision on simulation of water balance components”. Hydrological Processes, vol. 20, p. 1137–1156.
  • TUO, Y., DUAN, Z., DISSE, M. y CHIOGNA, G. (2016): “Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy)”. Science of The Total Environment, vol. 573, p. 66–82.
  • WILLIAMS, J.R. (1969): “Flood routing with variable travel time or variable storage coefficients”. Transactions of ASAE, vol. 12, p. 100–103.
  • YANG, J., REICHERT, P., ABBASPOUR, K.C., XIA, J. y YANG, H. (2008): “Comparing uncertainty analisys techniques for a SWAT application to the Chaohe Basin in China”. Journal of Hydrology, vol. 358, p. 1–23.
  • YUAN, Y., NIE, W. y SANDERS, E. (2014): SEDHYD 2014 Joint Conference. “Problems and Prospects of SWAT Model Application on an Arid/Semi-arid Watershed in Arizona”. Reno, NV (US).
  • ZAMBRANO-BIGIARINI, M. y ROJAS, R. (2013): “A model-independent Particle Swarm Optimisation software for model calibration”. Environmental Modelling & Software, vol. 43, p. 5–25.