Evaluación de la velocidad angular en el test de elevación activa de la pierna recta: Validez y fiabilidad de un dispositivo inercial (wimu protm)

  1. José Pino-Ortega 1
  2. Alejandro Hernández-Belmonte 2
  3. Alejandro Bastida-Castillo 3
  4. Carlos David Gómez-Carmona 4
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  2. 2 Universidad de Extremadura
    info

    Universidad de Extremadura

    Badajoz, España

    ROR https://ror.org/0174shg90

  3. 3 Grupo de Investigación BioVetMed & SportSci
  4. 4 Grupo de Optimización del Entrenamiento y el Rendimiento Deportivo (GOERD
Journal:
E-Balonmano.com: Revista de Ciencias del Deporte

ISSN: 1885-7019

Year of publication: 2018

Volume: 14

Issue: 2

Pages: 79-88

Type: Article

More publications in: E-Balonmano.com: Revista de Ciencias del Deporte

Abstract

Currently, there is an increase in the inertial devices application to measure active range of movement and angular velocity in exercises with a centre of rotation. Therefore, before it uses, a validity and reliability analysis of these devices are required. Objectives: The aims of this research were to describe the angular velocity performed in the active straight leg raise (EAPR) test and to assess the validity and between-units reliability of an inertial device for its measure. Method: 20 national-level football players volunteered to participate in this study, 10 youth players (age: 17.2 ± 0.87 years; height: 1.77±0.08 m; body mass: 67.96±3.4 kg; BMI: 21.7±1.2 kg/m2) y 10 senior players (age: 25.6 ± 4.24 years; height: 1.80±0.05 m; body mass: 73.35±4.2 kg; BMI: 22.63±1.7 kg/m2). 10 trials of EAPR test (5 trial with each leg) were performed. To assess between-unit’s reliability, two inertial devices WIMU PROTM (RealTrack Systems, Almeria, Spain), that registered simultaneously, were compared. Instead, video analysis was used as criterion to validity assesment. The analysis and export process of inertial device data was realized by S PROTM software (RealTrack Systems, Almeria, Spain). For video-analysis, this process was realized by Kinovea®. Results: The angular velocity average performed by the athletes was 137.64±21.13º/s. A perfect validity between video analysis and WIMU PROTM (ICC=1.00; r=1.00) and a very good reliability between WIMU PROTM devices (Bias=.41º/s; CV=.22%) was found. Conclusion: WIMU PROTM is a reliable and valid device to measure angular velocity in EAPR test.

Bibliographic References

  • Arai, T., Obuchi, S., y Shiba, Y. (2017). A novel clinical evaluation method using maximum angular velocity during knee extension to assess lower extremity muscle function of older adults. Archives of Gerontology and Geriatrics, 73, 143 147. https://doi.org/10.1016/j.archger.2017.07.015
  • Arai, T., Obuchi, S., Shiba, Y., Omuro, K., Nakano, C., y Higashi, T. (2008). The Feasibility of Measuring Joint Angular Velocity With a Gyro-Sensor. Archives of Physical Medicine and Rehabilitation, 89(1), 95-99. https://doi.org/10.1016/j.apmr.2007.07.051
  • Askling, C. M., Nilsson, J., y Thorstensson, A. (2010). A new hamstring test to complement the common clinical examination before return to sport after injury. Knee Surgery, Sports Traumatology, Arthroscopy, 18(12), 1798-1803. https://doi.org/10.1007/s00167-010-1265-3
  • Bastida-Castillo, A., Gomez-Carmona, C. D., Reche, P., Granero-Gil, P., y Pino-Ortega, J. (2018). Valoración de la estabilidad del tronco mediante un dispositivo inercial. Retos: Nuevas tendencias en Educación Física, Deportes y Recreación, 33, 199-203.
  • Boyd, B. S., y Villa, P. S. (2012). Normal inter-limb differences during the straight leg raise neurodynamic test: a cross sectional study. BMC musculoskeletal disorders, 13(1), 245.
  • Choi, S.-A., Cynn, H.-S., Yoon, T.-L., Choi, W.-J., y Lee, J.-H. (2014). Effects of Ankle Dorsiflexion on Vastus Medialis Oblique and Vastus Lateralis Muscle Activity During Straight Leg Raise Exercise with Hip External Rotation in Patellofemoral Pain Syndrome. Journal of Musculoskeletal Pain, 22(3), 260-267. https://doi.org/10.3109/10582452.2014.907857
  • Cormie, P., Deane, R., y McBride, J. M. (2007). Methodological Concerns for Determining Power Output in the Jump Squat. The Journal of Strength and Conditioning Research, 21(2), 424. https://doi.org/10.1519/R-19605.1
  • Cormie, P., McBride, J. M., y McCaulley, G. O. (2007). Validation of Power Measurement Techniques in Dynamic Lower Body Resistance Exercises. Journal of Applied Biomechanics, 23(2), 103-118. https://doi.org/10.1123/jab.23.2.103
  • Crewther, B. T., Kilduff, L. P., Cunningham, D. J., Cook, C., Owen, N., y Yang, G.-Z. (2011). Validating Two Systems for Estimating Force and Power. International Journal of Sports Medicine, 32(04), 254-258. https://doi.org/10.1055/s-0030
  • Deane, R. S., Chow, J. W., Tillman, M. D., y Fournier, K. A. (2005). Effects of Hip Flexor Training on Sprint, Shuttle Run, and Vertical Jump Performance. The Journal of Strength and Conditioning Research, 19(3), 615. https://doi.org/10.1519/14974.1
  • Fong, D. T.-P., y Chan, Y.-Y. (2010). The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review. Sensors, 10(12), 11556-11565. https://doi.org/10.3390/s101211556
  • García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., y Haff, G. G. (2017). Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? Journal of Strength and Conditioning Research, 1. https://doi.org/10.1519/JSC.0000000000001998
  • García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., y Haff, G. G. (2018). Differences in the Load– Velocity Profile Between 4 Bench-Press Variants. International Journal of Sports Physiology and Performance, 13(3), 326-331. https://doi.org/10.1123/ijspp.2017-0158
  • Ha, T.-H., Saber-Sheikh, K., Moore, A. P., y Jones, M. P. (2013). Measurement of lumbar spine range of movement and coupled motion using inertial sensors – A protocol validity study. Manual Therapy, 18(1), 87-91. https://doi.org/10.1016/j.math.2012.04.003
  • Hall, T., Cacho, A., McNee, C., Riches, J., y Walsh, J. (2001). Effects of the Mulligan traction straight leg raise technique on range of movement. Journal of Manual & Manipulative Therapy, 9(3), 128–133.
  • Hanney, R. N., Ridehalgh, C., Dawson, A., Lewis, D., y Kenny, D. (2016). The effects of neurodynamic straight leg raise treatment duration on range of hip flexion and protective muscle activity at P1. Journal of Manual & Manipulative Therapy, 24(1), 14-20. https://doi.org/10.1179/2042618613Y.0000000049
  • Hopkins, W. G., Marshall, S. W., Batterham, A. M., y Hanin, J. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science: Medicine & Science in Sports & Exercise, 41(1), 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278
  • Hori, N., Newton, R. U., Andrews, W. A., Kawamori, N., y others. (2007). Comparison of four different methods to measure power output during the hang power clean and the weighted jump squat. Journal of Strength and Conditioning Research, 21(2), 314.
  • Hu, H., Meijer, O. G., Hodges, P. W., Bruijn, S. M., Strijers, R. L., Nanayakkara, P. W. B., … van Dieën, J. H. (2012). Understanding the Active Straight Leg Raise (ASLR): an electromyographic study in healthy subjects. Manual Therapy, 17(6), 531-537. https://doi.org/10.1016/j.math.2012.05.010
  • Izquierdo, M. (2008). Biomecánica y bases neuromusculares de la actividad física y el deporte. Madrid: Ed. Médica Panamericana.
  • Jin, F., Nagasaki, T., y Wada, C. (2017). An estimation of knee and ankle joint angles during extension phase of standing up motion performed using an inertial sensor. Journal of physical therapy science, 29(7), 1171–1175.
  • Kiran, D., Carlson, M., Medrano, D., y Smith, D. R. (2010). Correlation of three different knee joint position sense measures. Physical Therapy in Sport, 11(3), 81-85. https://doi.org/10.1016/j.ptsp.2010.06.002
  • Luque Suárez, A., Fuente Hervías, M. T., Barón López, F. J., y Labajos Manzanares, M. T. (2010). Relación entre el test de elevación de pierna recta y el test ángulo poplíteo en la medición de la extensibilidad isquiosural. Fisioterapia, 32(6), 256-263. https://doi.org/10.1016/j.ft.2010.07.004
  • Mehta, S., Barker, K., Bowman, B., Galloway, H., Oliashirazi, N., y Oliashirazi, A. (2017). Reliability, Concurrent Validity, and Minimal Detectable Change for iPhone Goniometer App in Assessing Knee Range of Motion. The Journal of Knee Surgery, 30(06), 577-584. https://doi.org/10.1055/s-0036-1593877
  • Morán-Navarro, R., Martínez-Cava, A., Sánchez-Medina, L., Mora-Rodríguez, R., González-Badillo, J. J., y Pallarés, J. G. (2017). Movement velocity as a measure of level of effort during resistance exercise: Journal of Strength and Conditioning Research, 1. https://doi.org/10.1519/JSC.0000000000002017
  • Muñoz-López, M., Marchante, D., Cano-Ruiz, M. A., Chicharro, J. L., y Balsalobre-Fernández, C. (2017). Load, Force and Power-Velocity Relationships in the Prone Pull-Up Exercise. International Journal of Sports Physiology and Performance, 1-22. https://doi.org/10.1123/ijspp.2016-0657
  • Muyor, J. (2017). Validity and Reliability of a New Device (WIMU®) for Measuring Hamstring Muscle Extensibility. International Journal of Sports Medicine, 38(09), 691-695. https://doi.org/10.1055/s-0043-108998
  • Muyor, J. M., Granero-Gil, P., y Pino-Ortega, J. (2017). Reliability and validity of a new accelerometer (Wimu ® ) system for measuring velocity during resistance exercises. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 175433711773170. https://doi.org/10.1177/1754337117731700
  • Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., … González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678
  • Ruiz-Olaya, A. F., Callejas-Cuervo, M., y Lara-Herrera, C. N. (2017). Wearable low-cost inertial sensor-based electrogoniometer for measuring joint range of motion. DYNA, 84(201), 180. https://doi.org/10.15446/dyna.v84n201.59054
  • Sánchez-Medina, L., González-Badillo, J., Pérez, C., y Pallarés, J. (2013). Velocityand Power-Load Relationships of the Bench Pull vs. Bench Press Exercises. International Journal of Sports Medicine, 35(03), 209-216. https://doi.org/10.1055/s-0033-1351252
  • Sánchez-Medina, Luis, Pallarés, J., Pérez, C., Morán-Navarro, R., y González-Badillo, J. (2017). Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Medicine International Open, 01(02), E80-E88. https://doi.org/10.1055/s-0043-102933
  • Sierra-Silvestre, E., Torres Lacomba, M., y de la Villa Polo, P. (2017). Effect of leg dominance, gender and age on sensory responses to structural differentiation of straight leg raise test in asymptomatic subjects: a cross-sectional study. Journal of Manual & Manipulative Therapy, 25(2), 91-97. https://doi.org/10.1080/10669817.2016.1200216
  • Stearns, K. M., Keim, R. G., y Powers, C. M. (2013). Influence of Relative Hip and Knee Extensor Muscle Strength on Landing Biomechanics: Medicine & Science in Sports & Exercise, 45(5), 935-941. https://doi.org/10.1249/MSS.0b013e31827c0b94
  • Stearns, K. M., y Powers, C. M. (2014). Improvements in Hip Muscle Performance Result in Increased Use of the Hip Extensors and Abductors During a Landing Task. The American Journal of Sports Medicine, 42(3), 602-609. https://doi.org/10.1177/0363546513518410
  • Sun, T., Li, H., Liu, Q., Duan, L., Li, M., Wang, C., … Wang, Y. (2017). Inertial Sensor-Based Motion Analysis of Lower Limbs for Rehabilitation Treatments. Journal of Healthcare Engineering, 2017, 1-11. https://doi.org/10.1155/2017/1949170
  • Tojima, M., Ogata, N., Yozu, A., Sumitani, M., y Haga, N. (2013). Novel 3-Dimensional Motion Analysis Method for Measuring the Lumbar Spine Range of Motion: Repeatability and Reliability Compared With an Electrogoniometer. Spine, 38(21), E1327-E1333. https://doi.org/10.1097/BRS.0b013e3182a0dbc5
  • Vincent, W. J., y Weir, J. P. (2012). Statistics in Kinesiology (4th ed.). Washington D.C.: Human Kinetics.
  • Vohralik, S. L., Bowen, A. R., Burns, J., Hiller, C. E., y Nightingale, E. J. (2015). Reliability and Validity of a Smartphone App to Measure Joint Range: American Journal of Physical Medicine & Rehabilitation, 94(4), 325-330. https://doi.org/10.1097/PHM.0000000000000221
  • Wu, F., Zhang, K., Zhu, M., Mackintosh, C., Rice, T., Gore, C., … Holthous, S. (2007). An Investigation of an Integrated Low-cost GPS, INS and Magnetometer System for Sport Applications (pp. 113-120). Presentado en Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX.
  • Ylinen, J. J., Kautiainen, H. J., y Häkkinen, A. H. (2010). Comparison of active, manual, and instrumental straight leg raise in measuring hamstring extensibility. The Journal of Strength & Conditioning Research, 24(4), 972–977.