Identificación de líderes de opinión leales en Twitter
- Manuela López 1
- María Sicilia 2
- 1 Universidad Católica del Norte (Chile)
-
2
Universidad de Murcia
info
ISSN: 1131-6837
Año de publicación: 2017
Volumen: 17
Número: 1
Páginas: 105-124
Tipo: Artículo
Otras publicaciones en: Management Letters / Cuadernos de Gestión
Resumen
Twitter es la red social elegida por muchas empresas para crear comunidades de marca. Uno de los objetivos de estas comunidades es que se hable bien de la marca. A pesar de que se pueda hablar sobre la marca fuera de la comunidad, el hecho de tener una comunidad propicia que buena parte del debate generado en torno a la marca se produzca en el seno de la comunidad. La presencia de líderes de opinión en estas comunidades puede ayudar a que se genere debate sobre la marca y se difunda dicha información, pero si el líder de opinión no es leal a la marca puede provocar el efecto contrario al deseado. Este estudio tiene por objetivo identificar líderes de opinión leales a la marca a partir de la información que proporciona la red social Twitter. Esta identificación permitirá seleccionar a los mejores candidatos para las campañas de difusión de la marca. Para dar respuesta a este objetivo se han analizado tanto las respuestas a un breve cuestionario online como los datos del perfil de Twitter de 265 seguidores de tres marcas de cámaras fotográficas en esta red social. El estudio realizado revela que la identificación de un líder de opinión leal se ha de hacer atendiendo a tres criterios: la información del perfil del individuo, su número de seguidores y el número de personas o páginas a las que esa persona está siguiendo. Los líderes de opinión leales suelen tener muchos seguidores pero a su vez siguen a pocas cuentas en esta red social.
Información de financiación
Esta investigación ha sido financiada mediante el proyecto ECO2012-35766 del Ministerio de Economía y Competitividad y la ayuda recibida de la Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, en el marco del II PCTRM 2007-2010. Los autores agradecen también el apoyo recibido de la Fundación Cajamurcia.Financiadores
-
Ministerio de Economía y Competitividad
Spain
- ECO2012-35766
-
Fundación Séneca
Spain
- II PCTRM 2007-2010.
- Fundación Cajamurcia Spain
Referencias bibliográficas
- Aguilar-Arcos, V., San Martín-Gutiérrez, S. and Payo-Hernanz, R.J., 2014. La aplicación empresarial del marketing viral y el efecto boca-oreja electrónico: Opiniones de las empresas. Cuadernos de Gestión, 14 (1), 15-31.
- Algesheimer, R., Dholakia, U.M. and Herrmann, A., 2005. The social influence of brand community: Evidence from European car clubs”. The Journal of Marketing, 69 (3), 19-34.
- Bagozzi, R.P. and Yi, Y., 1988. On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16 (1), 74-94.
- Bakshy, E., Hofman, J.M., Mason, W.A. and Watts, D.J., 2011. Identifying influencers on twitter, in Fourth ACM International Conference on Web Search and Data Mining (WSDM).
- Bodendorf, F. and Kaiser, C., 2010. Detecting opinion leaders and trends in online communities. In Digital Society, 2010. ICDS’10. Fourth International Conference, IEEE, 124-129.
- Burson-Marsteller, 2012. Global Social Media Check Up 2012. Disponible en www. bm.com (acceso 9 Abril 2014).
- Carlson B.D., Suter, T.A. and Brown, T.J., 2008. Social versus psychological brand community: The role of psychological sense of brand community. Journal of Business Research, 61 (4), 284-291.
- Carpenter, J.M. and Fairhurst, A., 2005. Consumer shopping value, satisfaction, and loyalty for retail apparel brands. Journal of Fashion Marketing and Management, 9 (3), 256-269.
- Chan, K.K. and Misra, S., 1990. Characteristics of the opinion leader: a new dimension. Journal of Advertising, 19 (3), 53-60.
- Chaudhuri, A. and Holbrook, M.B., 2001. The chain of effects from brand trust and brand affect to brand performance: the role of brand loyalty. Journal of Marketing, 65 (2), 81-93.
- Cho, Y., Hwang, J. and Lee, D., 2012. Identification of effective opinion leaders in the diffusion of technological innovation: A social network approach. Technological Forecasting and Social Change, 79 (1), 97-106.
- Choi, S.M., Cha, J. W. and Han, Y.S., 2010. Identifying representative reviewers in Internet social media”, in Pan, J.S. Chen, S.M. y Nguyen, N.T. eds., Computational Collective Intelligence. Technologies and Applications, Berlin Heidelberg, Springer, 22-30.
- Cole, D.N., Hammond, T.P. and McCool, S.F., 1997. Information quantity and communication effectiveness: Lowâimpact messages on wilderness trailside bulletin boards. Leisure Sciences, 19 (1), 59-72.
- Coyle, J. R., Smith, T. and Platt, G., 2012. I’m here to help: How companies’ microblog responses to consumer problems influence brand perceptions. Journal of Research in Interactive Marketing, 6 (1), 27-41.
- Doh, S.J. and Hwang, J.S., 2009. How consumers evaluate eWOM (electronic word-ofmouth) messages. CyberPsychology & Behavior, 12 (2), 193-197.
- Fornell, C. and Larcker D.F., 1981. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18 (1), 39-50.
- Fournier, S., 1998. Consumers and their brands: developing relationship theory in consumer research. Journal of Consumer Research, 24 (4), 343-353.
- Gilly, M.C., Graham, J.L., Wolfinbarger, M.F. and Yale, L.J., 1998. A dyadic study of interpersonal information search. Journal of the Academy of Marketing Science, 26 (2), 83-100.
- GlobalWebIndex, 2014. Stream social: Quarterly social platforms update. Disponible en www. globalwebindex.net (acceso 10 Marzo 2014).
- Gnambs, T. and Batinic, B., 2012. A PersonalityâCompetence Model of Opinion Leadership. Psychology & Marketing, 29 (8), 606-621.
- Goldsmith, R. and Horowitz, D., 2006. Measuring motivations for online opinion seeking. Journal of Interactive Advertising, 6 (2), 1-16.
- Goldsmith, R.E., Flynn, L.R. and Goldsmith, E.B., 2003. Innovative consumers and market mavens. Journal of Marketing Theory and Practice, 11 (4), 54-65.
- Hennig-Thurau, T., Gwinner K. P., Walsh G. and Gremler D.D., 2004. Electronic word-ofmouth via consumer-opinion platforms: What Motivates consumers to articulate themselves on the Internet. Journal of Interactive Marketing, 18 (1), 38-52.
- Hubspot, 2013. State of Inbound Marketing Annual Report. Disponible en http://offers. hubspot.com (acceso 9 Mayo 2014).
- Jang, H., Olfman, L., Ko, I., Koh, J. and Kim, K., 2008. The influence of on-line brand community characteristics on community commitment and brand loyalty. International Journal of Electronic Commerce, 12 (3), 57-80.
- Kanetkar, V., Weinberg, C.B. and Weiss, D.L., 1992. Price sensitivity and television advertising exposures: Some empirical findings. Marketing Science, 11 (4), 359-371.
- Khare, A., Labrecque, L.I. and Asare, A.K., 2011. The assimilative and contrastive effects of word-of-mouth volume: An experimental examination of online consumer ratings. Journal of Retailing, 87 (1), 111-126.
- Kim, E., Sung, Y. and Kang, H., 2014. Brand followers’ retweeting behavior on Twitter: How brand relationships influence brand electronic word-of-mouth. Computers in Human Behavior, 37, 18-25.
- Kivran-Swaine, F., Govindan, P. and Naaman, M., 2011. The impact of network structure on breaking ties in online social networks: unfollowing on Twitter, in proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2011 Vancouver, Canada, 1101-1104.
- Laroche, M., Habibi, M.R., Richard, M.O. and Sankaranarayanan, R., 2012. The effects of social media based brand communities on brand community markers, value creation practices, brand trust and brand loyalty. Computers in Human Behavior, 28 (5), 17551767.
- Lee, C., Kwak, H., Park, H. and Moon, S., 2010. Finding influentials based on the temporal order of information adoption in Twitter in the 19th International Conference on World wide web ACM.
- Li, F. and Du, T.C., 2011. Who is talking? An ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs. Decision Support Systems. 51 (1), 190-197.
- Lin, B., Ming, S. and Bin, H., 2011. Virtual brand community participation and the impact on brand loyalty: A conceptual model. In Business Management and Electronic Information (BMEI), 2011 International Conference on IEEE, 489-492.
- Lyons, B. and Henderson, K., 2005. Opinion leadership in a computerâmediated environment. Journal of Consumer Behaviour, 4 (5), 319-329.
- Madupu, V. and Cooley, D.O., 2010. Antecedents and consequences of online brand community participation: A conceptual framework. Journal of Internet Commerce, 9 (2), 127-147.
- Marshall, R. and Gitosudarmo, I., 1995. Variation in the characteristics of opinion leaders across cultural borders. Journal of International Consumer Marketing, 8 (1), 5-22.
- Muñiz, A.M. and O´Guinn, T.C., 2001. Brand Community. Journal of Consumer Research, 27 (4), 412-432.
- Myers, J. H. and Robertson, T. S., 1972. Dimensions of opinion leadership. Journal of Marketing Research, 9 (1), 41-46.
- Nielsen, 2012. Nielsen Global Consumer Report. Disponible en www.nielsen.com (accesed 20 November 2014)
- Nunnally, J., 1978. Psychometric Theory, New York, NY, McGraw-Hill.
- Orange Foundation, 2013. eEspaña. Informe anual 2013 sobre el desarrollo de la sociedad de la información en España. Disponible en http://www.proyectosfundacionorange.es/ (accesed 01 June 2014)
- Pentina, I., Zhang, L. and Basmanova, O., 2013. Antecedents and consequences of trust in a social media brand: A cross-cultural study of Twitter. Computers in Human Behavior, 29 (4), 1546-1555.
- Princeton Survey Research Associates International, 2013. 72% of online adults are social networking site users. Disponible en www.pewinternet.org (acceso 9 Mayo 2014).
- Qu, H. and Lee, H., 2011. Travelers’ social identification and membership behaviors in online travel community. Tourism Management, 32 (6), 1262-1270.
- Ridings, C., Gefen, D. and Arinze, B., 2006. Psychological barriers: Lurker and poster motivation and behavior in online communities. Communications of the Association for Information Systems, 18, 329-354.
- Rogers, E.M. and Cartano, D.G., 1962. Living Research Methods of Measuring Opinion Leadership. Public Opinion Quarterly, 26 (3), 435-441.
- Shang, R.A., Chen, Y.C. and Liao, H.J., 2006. The value of participation in virtual consumer communities on brand loyalty. Internet Research, 16 (4), 398-418.
- Sicilia, M. and Ruiz, S., 2010. The effects of the amount of information on cognitive responses in online purchasing tasks. Electronic Commerce Research and Applications, 9 (2), 183-191.
- Silverpop, 2012. Las 20 redes sociales más utilizadas en el mundo. Disponible en www. silverpop.com (acceso 10 Mayo 2014).
- Smith, A.N., Fischer, E. and Yongjian, C., 2012. How does brand-related user-generated content differ across YouTube, Facebook, and Twitter?. Journal of Interactive Marketing, 26 (2), 102-113.
- StokburgerâSauer, N.E. and Hoyer, W.D., 2009. Consumer advisors revisited: What drives those with market mavenism and opinion leadership tendencies and why? Journal of Consumer Behaviour, 8 (2â3), 100-115.
- Swani, K., Brown, B.P. and Milne, G.R., 2014. Should tweets differ for B2B and B2C? An analysis of Fortune 500 companies’ Twitter communications. Industrial Marketing Management, 43 (5), 873-881.
- Valente, T.W. and Pumpuang, P., 2007. Identifying opinion leaders to promote behavior change. Health Education & Behavior, 34 (6), 881-896.
- Valente, T.W., 1996. Social network thresholds in the diffusion of innovations. Social Networks , 18 (1), 69-86.
- Van Eck, P.S., Jager, W. and Leeflang, P.S., 2011. Opinion leaders’ role in innovation diffusion: A simulation study. Journal of Product Innovation Management, 28 (2), 187-203.
- Wirtz, J., den Ambtman, A., Bloemer, J., Horváth, C., Ramaseshan, B., van de Klundert, J., Canli, Z.G. and Kandampully, J., 2013. Managing brands and customer engagement in online brand communities. Journal of Service Management, 24 (3), 223-244.
- Westerman, D., Spence, P.R. and Van Der Heide, B., 2012. A social network as information: The effect of system generated reports of connectedness on credibility on Twitter. Computers in Human Behavior, 28 (1), 199-206.