El tomate, ¿alimento saludable y/o funcional?

  1. Navarro González, Inmaculada
  2. Periago, Maria Jesús
Revista:
Revista española de nutrición humana y dietética

ISSN: 2173-1292

Año de publicación: 2016

Título del ejemplar: Revista Española de Nutrición Humana y Dietética

Volumen: 20

Número: 4

Páginas: 323-335

Tipo: Artículo

DOI: 10.14306/RENHYD.20.4.208 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Revista española de nutrición humana y dietética

Objetivos de desarrollo sostenible

Resumen

Este trabajo es una revisión bibliográfica científica sobre la presencia de compuestos bioactivos en tomate y derivados y la función de estos compuestos para promover la salud del organismo humano. Diferentes estudios científicos muestran que el tomate o sus derivados tienen diferentes tipos de moléculas, algunas con actividad antioxidante, que actúan protegiendo a lípidos, lipoproteínas, ADN, etc. de los radicales libres generados por el organismo. Esta función podría ser una de las causantes de la aparente relación entre su consumo y la protección de enfermedades degenerativas y crónicas como el cáncer, enfermedades cardiovasculares, enfermedad de Parkinson, etc. Estudios más recientes han propuesto otros mecanismos bioquímicos por los cuales los componentes del tomate pueden ejercer esa función beneficiosa sobre la salud. Pero además de intentar conocer los efectos beneficiosos de los compuestos presentes en el tomate de forma aislada, algunos estudios científicos parecen indicar que el mayor beneficio de este alimento se debe al efecto sinérgico que existe entre todos sus compuestos. Y algunos estudios epidemiológicos asocian que su consumo asiduo tiene diferentes efectos beneficiosos sobre la salud. Debido a la relación existente entre los compuestos bioactivos del tomate, su consumo cotidiano y su efecto sobre la salud humana, el objetivo de la presente revisión bibliográfica es dar a conocer los compuestos presentes en este alimento y sus posibles acciones sobre la salud.

Referencias bibliográficas

  • (1) Boffetta P, Couto E, Wichmann J, Ferrari P, Trichopoulos D, Bueno-de-Mesquita HB, et al. Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2010; 102(8): 529-37.
  • (2) Soerjomataram I, Oomen D, Lemmens V, Oenema A, Benetou V, Trichopoulou A, et al. Increased consumption of fruit and vegetables and future cancer incidence in selected European countries. Eur J Cancer. 2010; 46(14): 2563-80.
  • (3) Reiss R, Johnston J, Tucker K, DeSesso JM, Keen CL. Estimation of cancer risks and benefits associated with a potential increased consumption of fruits and vegetables. Food Chem Toxicol. 2012; 50(12): 4421-7.
  • (4) George TW, Paterson E, Waroonphan S, Gordon MH, Lovegrove JA. Effects of chronic consumption of fruit and vegetable puree-based drinks on vasodilation, plasma oxidative stability and antioxidant status. J Hum Nutr Diet. 2012; 25(5): 477-87.
  • (5) Cooper AJ, Forouhi NG, Ye Z, Buijsse B, Arriola L, Balkau B, et al. Fruit and vegetable intake and type 2 diabetes: EPICInterAct prospective study and meta-analysis. Eur J Clin Nutr. 2012; 66(10): 1082-92.
  • (6) Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res. 2007; 55(3): 207-16.
  • (7) Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y. Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARalpha, PPARgamma and LXRalpha. PLoS ONE. 2010; 5(8):e12399.
  • (8) Cho A-S, Jeon S-M, Kim M-J, Yeo J, Seo K-I, Choi M-S, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol. 2010; 48(3): 937-43.
  • (9) Verschuren L, Wielinga PY, van Duyvenvoorde W, Tijani S, Toet K, van Ommen B, et al. A dietary mixture containing fish oil, resveratrol, lycopene, catechins, and vitamins E and C reduces atherosclerosis in transgenic mice. J Nutr. 2011; 141(5): 863-9.
  • (10) Binns N. Perspectives on ILSI’s International Activities on Functional Foods. Bruselas, Bélgica: ILSI Europe; 2009.
  • (11) Hasler CM, Brown AC, American Dietetic Association. Position of the American Dietetic Association: functional foods. J Am Diet Assoc. 2009; 109(4): 735-46.
  • (12) Silaste M-L, Alfthan G, Aro A, Kesäniemi YA, Hörkkö S. Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation. Br J Nutr. 2007; 98(6): 1251-8.
  • (13) Sesso HD, Wang L, Ridker PM, Buring JE. Tomato-based food products are related to clinically modest improvements in selected coronary biomarkers in women. J Nutr. 2012; 142(2): 326-33.
  • (14) Ried K, Fakler P. Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of intervention trials. Maturitas. 2011; 68(4): 299-310.
  • (15) Blum A, Merei M, Karem A, Blum N, Ben-Arzi S, Wirsansky I, et al. Effects of tomatoes on the lipid profile. Clin Invest Med. 2006; 29(5): 298-300.
  • (16) Periago MJ, García-Alonso J, Jacob K, Olivares AB, Bernal MJ, Iniesta MD, et al. Bioactive compounds, folates and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. Int J Food Sci Nutr. 2009; 60(8): 694-708.
  • (17) Slimestad R, Verheul M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J Sci Food Agric. 2009; 89(8): 1255-70.
  • (18) Adalid AM, Roselló S, Nuez F. Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. J Food Compos Anal. 2010; 23(6): 613-8.
  • (19) Palozza P, Simone R, Catalano A, Parrone N, Monego G, Ranelletti FO. Lycopene regulation of cholesterol synthesis and efflux in human macrophages. J Nutr Biochem. 2011; 22(10): 971-8.
  • (20) Lorenz M, Fechner M, Kalkowski J, Fröhlich K, Trautmann A, Böhm V, et al. Effects of lycopene on the initial state of atherosclerosis in New Zealand White (NZW) rabbits. PLoS ONE. 2012; 7(1): e30808.
  • (21) Hirsch K, Atzmon A, Danilenko M, Levy J, Sharoni Y. Lycopene and other carotenoids inhibit estrogenic activity of 17betaestradiol and genistein in cancer cells. Breast Cancer Res Treat. 2007; 104(2): 221-30.
  • (22) Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979; 278(5706): 737-8.
  • (23) Trombino S, Serini S, Di Nicuolo F, Celleno L, Andò S, Picci N, et al. Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with alpha-tocopherol, beta-carotene, and ascorbic acid. J Agric Food Chem. 2004; 52(8): 2411-20.
  • (24) Hazewindus M, Haenen GRMM, Weseler AR, Bast A. The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and α-tocopherol. Food Chem. 2012; 132(2): 954-8.
  • (25) Shi J, Le Maguer M. Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr. 2000; 40(1): 1-42.
  • (26) George B, Kaur C, Khurdiya DS, Kapoor HC. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem. 2004; 84(1): 45-51.
  • (27) Martínez-Valverde I, Periago MJ, Provan G, Chesson A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J Sci Food Agric. 2002; 82(3): 323-30.
  • (28) Yang T, Yang X, Wang X, Wang Y, Song Z. The role of tomato products and lycopene in the prevention of gastric cancer: a meta-analysis of epidemiologic studies. Med Hypotheses. 2013; 80(4): 383-8.
  • (29) Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, van Breemen RB. Effects of lycopene on protein expression in human primary prostatic epithelial cells. Cancer Prev Res (Phila). 2013; 6(5): 419-27.
  • (30) Palozza P, Catalano A, Simone RE, Mele MC, Cittadini A. Effect of lycopene and tomato products on cholesterol metabolism. Ann Nutr Metab. 2012; 61(2): 126-34.
  • (31) Fuhrman B, Elis A, Aviram M. Hypocholesterolemic effect of lycopene and beta-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem Biophys Res Commun. 1997; 233(3): 658-62.
  • (32) Kaur H, Chauhan S, Sandhir R. Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease. Neurochem Res. 2011; 36(8): 1435-43.
  • (33) Li X, Xu J. Lycopene supplement and blood pressure: an updated meta-analysis of intervention trials. Nutrients. 2013; 5(9): 3696-712.
  • (34) Chen P, Zhang W, Wang X, Zhao K, Negi DS, Zhuo L, et al. Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine (Baltimore). 2015; 94(33): e1260.
  • (35) Wang Y, Cui R, Xiao Y, Fang J, Xu Q. Effect of Carotene and Lycopene on the Risk of Prostate Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. PLoS ONE. 2015; 10(9): e0137427.
  • (36) Navarro-González I, Pérez-Sánchez H, Martín-Pozuelo G, García-Alonso J, Periago MJ. The inhibitory effects of bioactive compounds of tomato juice binding to hepatic HMGCR: in vivo study and molecular modelling. PLoS ONE. 2014; 9(1): e83968.
  • (37) Chen J, Song Y, Zhang L. Effect of lycopene supplementation on oxidative stress: an exploratory systematic review and meta-analysis of randomized controlled trials. J Med Food. 2013; 16(5): 361-74.
  • (38) Vioque J, Weinbrenner T, Asensio L, Castelló A, Young IS, Fletcher A. Plasma concentrations of carotenoids and vitamin C are better correlated with dietary intake in normal weight than overweight and obese elderly subjects. Br J Nutr. 2007; 97(5): 977-86.
  • (39) Semba RD, Lauretani F, Ferrucci L. Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys. 2007; 458(2): 141-5.
  • (40) Aydemir G, Carlsen H, Blomhoff R, Rühl R. Lycopene induces retinoic acid receptor transcriptional activation in mice. Mol Nutr Food Res. 2012; 56(5): 702-12.
  • (41) Stahl W, Sies H. β-Carotene and other carotenoids in protection from sunlight. Am J Clin Nutr. 2012; 96(5): 1179S-84S.
  • (42) Mackinnon ES, Rao AV, Rao LG. Dietary restriction of lycopene for a period of one month resulted in significantly increased biomarkers of oxidative stress and bone resorption in postmenopausal women. J Nutr Health Aging. 2011; 15(2): 133-8.
  • (43) Ahn J, Lee H, Jung CH, Ha T. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res. 2012; 56(11): 1665-74.
  • (44) Martín-Pozuelo G, Navarro-González I, González-Barrio R, Santaella M, García-Alonso J, Hidalgo N, et al. The effect of tomato juice supplementation on biomarkers and gene expression related to lipid metabolism in rats with induced hepatic steatosis. Eur J Nutr. 2015; 54(6): 933-44.
  • (45) Hu K-Q, Liu C, Ernst H, Krinsky NI, Russell RM, Wang X-D. The biochemical characterization of ferret carotene-9’,10’-monooxygenase catalyzing cleavage of carotenoids in vitro and in vivo. J Biol Chem. 2006; 281(28): 19327-38.
  • (46) Gajic M, Zaripheh S, Sun F, Erdman JW. Apo-8’-lycopenal and apo-12’-lycopenal are metabolic products of lycopene in rat liver. J Nutr. 2006; 136(6): 1552-7.
  • (47) Kopec RE, Riedl KM, Harrison EH, Curley RW, Hruszkewycz DP, Clinton SK, et al. Identification and quantification of apolycopenals in fruits, vegetables, and human plasma. J Agric Food Chem. 2010; 58(6): 3290-6.
  • (48) European Food Safety Authority (EFSA). Safety of lycopene oleoresin from tomatoes - Scientific Opinion of the Panel on Scientific Panel on Dietetic Products, Nutrition and Allergies: Safety of lycopene oleoresin from tomatoes - Scientific Opinion of the Panel on Scientific Panel on Dietetic Products, Nutrition and Allergies. EFSA Journal. 2008; 6(4):675.
  • (49) EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the modification of the authorisation of a health claim related to water-soluble tomato concentrate and helps to maintain a healthy blood flow and benefits circulation pursuant to Article 13(5) of Regulation (EC) No 1924/2006 followi: WSTC I and II and reduction of platelet aggregation. EFSA Journal. 2010; 8(7):1689.
  • (50) Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao D-Y, Katz NB. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med (Maywood). 2002; 227(10): 845-51.
  • (51) Frusciante L, Carli P, Ercolano MR, Pernice R, Di Matteo A, Fogliano V, et al. Antioxidant nutritional quality of tomato. Mol Nutr Food Res. 2007; 51(5): 609-17.
  • (52) Kacjan Marsić N, Sircelj H, Kastelec D. Lipophilic antioxidants and some carpometric characteristics of fruits of ten processing tomato varieties, grown in different climatic conditions. J Agric Food Chem. 2010; 58(1): 390-7.
  • (53) Gitenay D, Lyan B, Rambeau M, Mazur A, Rock E. Comparison of lycopene and tomato effects on biomarkers of oxidative stress in vitamin E deficient rats. Eur J Nutr. 2007; 46(8): 468-75.
  • (54) Campbell JK, Stroud CK, Nakamura MT, Lila MA, Erdman JW. Serum testosterone is reduced following short-term phytofluene, lycopene, or tomato powder consumption in F344 rats. J Nutr. 2006; 136(11): 2813-9.
  • (55) Aust O, Stahl W, Sies H, Tronnier H, Heinrich U. Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema. Int J Vitam Nutr Res. 2005; 75(1): 54-60.
  • (56) Shaish A, Harari A, Kamari Y, Soudant E, Harats D, Ben-Amotz A. A carotenoid algal preparation containing phytoene and phytofluene inhibited LDL oxidation in vitro. Plant Foods Hum Nutr. 2008; 63(2): 83-6.
  • (57) Pinela J, Barros L, Carvalho AM, Ferreira ICFR. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens. Food Chem Toxicol. 2012; 50(3-4): 829-34.
  • (58) Fitzgerald KC, O’Reilly ÉJ, Fondell E, Falcone GJ, McCullough ML, Park Y, et al. Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: pooled results from 5 cohort studies. Ann Neurol. 2013; 73(2): 236-45.
  • (59) Karppi J, Laukkanen JA, Mäkikallio TH, Ronkainen K, Kurl S. Low β-carotene concentrations increase the risk of cardiovascular disease mortality among Finnish men with risk factors. Nutr Metab Cardiovasc Dis. 2012; 22(10): 921-8.
  • (60) Imamura T, Bando N, Yamanishi R. Beta-carotene modulates the immunological function of RAW264, a murine macrophage cell line, by enhancing the level of intracellular glutathione. Biosci Biotechnol Biochem. 2006; 70(9): 2112-20.
  • (61) Amengual J, Gouranton E, van Helden YGJ, Hessel S, Ribot J, Kramer E, et al. Beta-carotene reduces body adiposity of mice via BCMO1. PLoS ONE. 2011; 6(6): e20644.
  • (62) Michikawa T, Ishida S, Nishiwaki Y, Kikuchi Y, Tsuboi T, Hosoda K, et al. Serum antioxidants and age-related macular degeneration among older Japanese. Asia Pac J Clin Nutr. 2009; 18(1): 1-7.
  • (63) West KP, Christian P, Labrique AB, Rashid M, Shamim AA, Klemm RDW, et al. Effects of vitamin A or beta carotene supplementation on pregnancy-related mortality and infant mortality in rural Bangladesh: a cluster randomized trial. JAMA. 2011; 305(19): 1986-95.
  • (64) Niizu PY, Rodriguez-Amaya DB. New data on the carotenoid composition of raw salad vegetables. J Food Compos Anal. 2005; 18(8): 739-49.
  • (65) Murthy RK, Ravi K, Balaiya S, Brar VS, Chalam KV. Lutein protects retinal pigment epithelium from cytotoxic oxidative stress. Cutan Ocul Toxicol. 2014; 33(2): 132-7.
  • (66) Narisawa T, Fukaura Y, Hasebe M, Ito M, Aizawa R, Murakoshi M, et al. Inhibitory effects of natural carotenoids, alphacarotene, beta-carotene, lycopene and lutein, on colonic aberrant crypt foci formation in rats. Cancer Lett. 1996; 107(1): 137-42.
  • (67) Wang M-X, Jiao J-H, Li Z-Y, Liu R-R, Shi Q, Ma L. Lutein supplementation reduces plasma lipid peroxidation and C-reactive protein in healthy nonsmokers. Atherosclerosis. 2013; 227(2): 380-5.
  • (68) Leermakers ET, Darweesh SK, Baena CP, Moreira EM, Melo van Lent D, Tielemans MJ, et al. The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis. Am J Clin Nutr. 2016; 103(2): 481-94.
  • (69) Lavelli V, Peri C, Rizzolo A. Antioxidant Activity of Tomato Products As Studied by Model Reactions Using Xanthine Oxidase, Myeloperoxidase, and Copper-Induced Lipid Peroxidation. J Agric Food Chem. 2000; 48(5): 1442-8.
  • (70) Kader AA. Flavor quality of fruits and vegetables. J Sci Food Agric. 2008; 88(11): 1863-8.
  • (71) Purves WK, Sadava D, Orians GH, Heller C. Life, the science of biology. Sunderland, MA; Gordonsville, VA: Sinauer Associates; W.H. Freeman and Co.; 2004.
  • (72) Velíšek J. Chemie potravin. República Checa: OSSIS; 2002.
  • (73) Campbell NA, Reece JB. Biology. 7ª ed. Boston, MA: Pearson, Benjamin Cummings; 2005. 1396 p.
  • (74) Ferry M, Roussel A-M. Micronutrient status and cognitive decline in ageing. Eur Geriatr Med. 2011; 2(1): 15-21.
  • (75) Guil-Guerrero JL, Rebolloso-Fuentes MM. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J Food Compos Anal. 2009; 22(2): 123-9.
  • (76) Fernández-Ruiz V, Olives AI, Cámara M, Sánchez-Mata M de C, Torija ME. Mineral and trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.,) and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & D.M. Spooner). Biol Trace Elem Res. 2011; 141(1-3): 329-39.
  • (77) Friedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem. 2002; 50(21): 5751-80.
  • (78) Iijima Y, Fujiwara Y, Tokita T, Ikeda T, Nohara T, Aoki K, et al. Involvement of ethylene in the accumulation of esculeoside A during fruit ripening of tomato (Solanum lycopersicum). J Agric Food Chem. 2009; 57(8): 3247-52.
  • (79) Fujiwara Y, Yahara S, Ikeda T, Ono M, Nohara T. Cytotoxic major saponin from tomato fruits. Chem Pharm Bull. 2003; 51(2): 234-5.
  • (80) Fujiwara Y, Takaki A, Uehara Y, Ikeda T, Okawa M, Yamauchi K, et al. Tomato steroidal alkaloid glycosides, esculeosides A and B, from ripe fruits. Tetrahedron. 2004; 60(22): 4915-20.
  • (81) Manabe H, Murakami Y, El-Aasr M, Ikeda T, Fujiwara Y, Ono M, et al. Content variations of the tomato saponin esculeoside A in various processed tomatoes. J Nat Med. 2011; 65(1): 176-9.
  • (82) Koh E, Kaffka S, Mitchell AE. A long-term comparison of the influence of organic and conventional crop management practices on the content of the glycoalkaloid α-tomatine in tomatoes. J Sci Food Agric. 2013; 93(7): 1537-42.
  • (83) Nohara T, Ono M, Ikeda T, Fujiwara Y, El-Aasr M. The tomato saponin, esculeoside A. J Nat Prod. 2010; 73(10): 1734-41.
  • (84) Fujiwara Y, Kiyota N, Hori M, Matsushita S, Iijima Y, Aoki K, et al. Esculeogenin A, a new tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in ApoE-deficient mice by inhibiting ACAT. Arterioscler Thromb Vasc Biol. 2007; 27(11): 2400-6.
  • (85) Dorais M, Ehret DL, Papadopoulos AP. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev. 2008; 7(2): 231.
  • (86) Halevy S, Koth H, Guggenheim K. The vitamin and mineral content of fruits and vegetables grown in Israel. Br J Nutr. 1957; 11(4): 409-13.
  • (87) Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F. Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids. 2001; 36(Suppl 1): S53-63.
  • (88) Lutsenko EA, Cárcamo JM, Golde DW. Vitamin C prevents DNA mutation induced by oxidative stress. J Biol Chem. 2002; 277(19): 16895-9.
  • (89) Nagappan A, Park KI, Park HS, Kim JA, Hong GE, Kang SR, et al. Vitamin C induces apoptosis in AGS cells by downregulation of 14-3-3σ via a mitochondrial dependent pathway. Food Chem. 2012; 135(3): 1920-8.
  • (90) Cameron E, Pauling L. Cancer and vitamin C: a discussion of the nature, causes, prevention, and treatment of cancer with special reference to the value of vitamin C. Philadelphia: Camino Books; 1993.
  • (91) Hua Y-F, Wang G-Q, Jiang W, Huang J, Chen G-C, Lu C-D. Vitamin C Intake and Pancreatic Cancer Risk: A Meta-Analysis of Published Case-Control and Cohort Studies. PLoS ONE. 2016; 11(2): e0148816.
  • (92) Cao D, Shen K, Li Z, Xu Y, Wu D. Association between vitamin C Intake and the risk of cervical neoplasia: A meta-analysis. Nutr Cancer. 2016; 68(1): 48-57.
  • (93) Jia L, Jia Q, Shang Y, Dong X, Li L. Vitamin C intake and risk of renal cell carcinoma: a meta-analysis. Sci Rep. 2015; 5: 17921.
  • (94) Key TJ, Appleby PN, Travis RC, Albanes D, Alberg AJ, Barricarte A, et al. Carotenoids, retinol, tocopherols, and prostate cancer risk: pooled analysis of 15 studies. Am J Clin Nutr. 2015; 102(5): 1142-57.
  • (95) Konings EJ, Roomans HH, Dorant E, Goldbohm RA, Saris WH, van den Brandt PA. Folate intake of the Dutch population according to newly established liquid chromatography data for foods. Am J Clin Nutr. 2001; 73(4): 765-76.
  • (96) Bazzano LA, Reynolds K, Holder KN, He J. Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA. 2006; 296(22): 2720-6.
  • (97) Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS, et al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA. 2007; 297(21): 2351-9.
  • (98) Khanna D, Park GS, Paulus HE, Simpson KM, Elashoff D, Cohen SB, et al. Reduction of the efficacy of methotrexate by the use of folic acid: post hoc analysis from two randomized controlled studies. Arthritis Rheum. 2005; 52(10): 3030-8.
  • (99) Wolff T, Witkop CT, Miller T, Syed SB, U.S. Preventive Services Task Force. Folic acid supplementation for the prevention of neural tube defects: an update of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2009; 150(9): 632-9.
  • (100) García-Valverde V, Navarro-González I, García-Alonso J, Periago MJ. Antioxidant Bioactive Compounds in Selected Industrial Processing and Fresh Consumption Tomato Cultivars. Food Bioprocess Technol. 2013; 6(2): 391-402.
  • (101) Slimestad R, Fossen T, Verheul MJ. The flavonoids of tomatoes. J Agric Food Chem. 2008; 56(7): 2436-41.
  • (102) Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013; 138(4): 2099-107.
  • (103) Araújo JR, Gonçalves P, Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res. 2011; 31(2): 77-87.
  • (104) El-Seedi HR, El-Said AMA, Khalifa SAM, Göransson U, Bohlin L, Borg-Karlson A-K, et al. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem. 2012; 60(44): 10877-95.
  • (105) Li A-N, Li S, Zhang Y-J, Xu X-R, Chen Y-M, Li H-B. Resources and biological activities of natural polyphenols. Nutrients. 2014; 6(12): 6020-47.
  • (106) Ovaskainen M-L, Törrönen R, Koponen JM, Sinkko H, Hellström J, Reinivuo H, et al. Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr. 2008; 138(3):562-6.
  • (107) Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients. 2016; 8(2): 78.
  • (108) Escudero E, González P. Dietary fibre. Nutr Hosp. 2006; 21(Suppl 2): 61-72.
  • (109) Navarro-González I, García-Valverde V, García-Alonso J, Periago MJ. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res Int. 2011; 44(5): 1528-35.
  • (110) Saura-Calixto F, García-Alonso A, Goñi I, Bravo L. In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis. J Agric Food Chem. 2000; 48(8): 3342-7.
  • (111) Burkitt DP. Acute abdomens--British and Baganda compared. East Afr Med J. 1952; 29(5): 189-94.
  • (112) Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009; 89(6): 1751-9.
  • (113) Parnell JA, Raman M, Rioux KP, Reimer RA. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2012; 32(5): 701-11.
  • (114) Marlett JA, McBurney MI, Slavin JL, American Dietetic Association. Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc. 2002; 102(7): 993-1000.
  • (115) Saura-Calixto F. Antioxidant Dietary Fiber Product: A New Concept and a Potential Food Ingredient. J Agric Food Chem. 1998; 46(10): 4303-6.
  • (116) Ruiz-Roso B, Quintela JC, de la Fuente E, Haya J, Pérez-Olleros L. Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Foods Hum Nutr. 2010; 65(1): 50-6.
  • (117) Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch Cardiovasc Dis. 2016; 109(1): 39-54.
  • (118) Dahl WJ, Stewart ML. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J Acad Nutr Diet. 2015; 115(11): 1861-70.