Flood hazard assessment for bridge crossings over ephemeral channelsa case study of the Murcia coast (SE Spain)

  1. Conesa-García, C. 2
  2. García-Lorenzo, R. 1
  1. 1 Comunidad Autónoma de la Región de Murcia
    info

    Comunidad Autónoma de la Región de Murcia

    Murcia, España

  2. 2 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters

ISSN: 0211-6820 1697-9540

Año de publicación: 2014

Título del ejemplar: Geomorfología Fluvial / Fluvial geomorphology

Volumen: 40

Número: 1

Páginas: 119-146

Tipo: Artículo

DOI: 10.18172/CIG.2507 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Objetivos de desarrollo sostenible

Resumen

Los puentes se construyen normalmente cuando el tráfico o la importancia de la red de carreteras justifican su coste. La mayoría de los puentes de carreteras son estructuras permanentes, a menudo vulnerables ante sucesos hidrológicos extremos. Particularmente en medios semiáridos, las aguas de avenida pueden desbordar de forma significativa los márgenes del cauce y cambiar su curso, amenazando la capacidad de los puentes para realizar las funciones previstas en su diseño. En este artículo se presenta una propuesta de evaluación del peligro de las avenidas en cruces de puentes sobre cauces efímeros. En concreto, se han ensayado dos índices de peligrosidad asociados a las aguas de avenida en cruces de puentes sobre ramblas de la franja costera de la Región de Murcia (SE de la Península Ibérica): Un Índice de Peligrosidad de Avenidas para cruces con puentes (FHIBC), y un Índice de Peligrosidad Geomorfologica (GHIBC) para el mismo tipo de cruces. FHIBC se basa en el grado de exposición y efectividad de las obras de drenaje ante inundaciones con diferentes tiempos de retorno. El segundo índice, GHIBC, integra parámetros relativos a la resistencia hidráulica del lecho fluvial y a su erosión potencial ante grandes avenidas. Variables como la susceptibilidad granular a la incisión del lecho, la velocidad crítica y la erosión transitoria han sido estimadas previamente a partir de datos de campo. Los resultados muestran que FHIBC proporciona un buen indicador para obtener una evaluación global de la peligrosidad de las avenidas en este tipo de cruces, mientras que GHIBC aporta una información útil sobre los factores hidromorfológicos que ponen en peligro la estabilidad de los puentes en cauces efímeros (ramblas y ríos-rambla). La aplicación conjunta de ambos índices puede ser además un instrumento eficiente para la identificación de cruces de alto riesgo y para la mejora de ciertas infraestructuras potencialmente críticas.

Referencias bibliográficas

  • AASHTO 1999. AASHTO Maintenance Manual: The Maintenance and Management of Roadways and Bridges. American Association of State Highway and Transportation Officials.
  • AASHTO 2003a. AASHTO Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges. American Association of State Highway and Transportation Officials.
  • AASHTO 2003b. AASHTO Steel Guide Specifications for Horizontally Curved Steel Girder Highway Bridges. American Association of State Highway and Transportation Officials.
  • AASHTO 2004. AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials, 3rd Edition.
  • ACA (Agencia Catalana de l’Aigua) 2004. Recomanacions tècniques per al disseny d’infraestructures que interfereixen amb l’espai fluvial. Agencia Catalana de l’Aigua. Departament de Medi Ambient i Habitatge.
  • ACA (Agencia Catalana de l’Aigua) 2011. Memòria 2011. Generalitat de Catalunya, Departament de Territori i Sostenibilitat, Barcelona, 103 pp.
  • Alonso-Sarria, F., Lopez-Bermudez, F., Conesa-Garcia, C. 2002. Synoptic conditions producing stream rainfall events within the Mediterranean Coast of Iberian Peninsula. In Dryland Rivers. L. Bull, M. Kirkby (eds.), JohnWiley & Sons, Chichester, pp. 351-372.
  • Arneson, L.A., Abt, S.R. 1999. Vertical Contraction Scour at Bridges with Water Flowing Under Pressure Conditions. In Stream Stability and Scour at Highway Bridges, E.V. Richardson, P.F. Lagasse (eds.), ASCE Compendium, Reston, VA.
  • Brice, J.C. 1984. Assessment of Channel Stability at Bridge Sites. Transportation Research Record, Vol. 2, No. 950, Transportation Research Board,Washington, D.C. 20418.
  • Chin, A., Gregory, K.J. 2001. Urbanization and adjustment of ephemeral stream channels. Annals of the Association of American Geographers 91(4), 595-608.
  • Conesa-Garcia, C. 2005. Les ‘ramblas’ du Sud-est Espagnol: systemes hydromorphologiques en milieu mediterraneen sec. Zeitschrift für Geomorphologie 49(2), 205-224.
  • Conesa-Garcia, C., Garcia-Lorenzo, R. 2009. The effectiveness of check dams on the control of general transitory bed scouring in semiarid catchment areas (South East Spain). Water and Environment Journal 23(1), 1-14.
  • Conesa-Garcia, C., Garcia-Lorenzo, R. 2010. Bed scour-sedimentation balance induced by check dams in semiarid catchments with different lithology. In Check Dams, Morphological Adjustments and Erosion Control in Torrential Streams, Chapter 13, C. Conesa-Garcia, M.A. Lenzi (eds.), Nova Science Publishers, New York, pp. 283-306.
  • Conesa Garcia, C., Garcia Lorenzo, R. 2011. Factores e indices de peligrosidad de las aguas de avenida en cruces de carreteras con ramblas. Estudio aplicado a la vertiente litoral sur de la region de Murcia. Boletín de la Asociación de Geógrafos Españoles 57, 195-218.
  • Conesa-Garcia, C., Caselles-Miralles, V., Sanchez-Tomas, J.M., Garcia-Lorenzo, R. 2010. Hydraulic geometry, GIS and remote sensing techniques against rainfall-runoff models for estimating flood magnitude in ephemeral fluvial systems. Remote Sensing 2(11), 2607-2628.
  • Deng, L., Cai, C.S. 2010. Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures-Review. Practice Periodical on Structural Design and Construction (ASCE) 15(2), 10 pp.
  • Federal HighwayAdministration 2001. Evaluating Scour at Bridges. Hydraulic Engineering Circular 18, Federal HighwayAdministration, U.S. Department of Transportation,Washington, DC.
  • Furniss, M.J., Ledwith, T.S., Love, M.A., McFadin, B.C., Flanagan, S.A. 2002. Response of Road-stream Crossings to Large Flood Events in Washington, Oregon, and Northern California. United States Department of Agriculture, Forest Service, Technology and Development Center, San Dimas.
  • Garcia Lorenzo, R., Conesa Garcia, C. 2011. Estimacion de caudales de avenida y delimitacion de areas inundables mediante metodos hidrometeorologicos e hidraulicos y tecnicas SIG. Estudio aplicado al litoral sur de la region de Murcia. Papeles de Geografía 53-54, 107-123.
  • Jaen Diego, P., Romana Garcia, M. 2004. Diseño de obras de drenaje transversal. Carreteras: Revista técnica de la Asociación Española de la Carretera 136, 32-50.
  • Hjulstrom, F. 1935. The Morphological Activity of Rivers as Illustrated by River Fyris. Bull. Geol. Inst. Uppsala 25, 89-122.
  • Konrad, C.P., Booth, D.B. 2002. Hydrologic trends associated with urban development for selected streams in western Washington. U.S. Geological Survey Water-Resources Investigations Report 02-4040, 40 pp.
  • Kranc, S.C., Romano, F., Droz, E., Deavers, R., Wilmot, J., Ethier, S., Rabens, G. 1997. Hydraulic performance of structures for bridge drainage. National Technical Information Service, USA, 37 pp.
  • Lagasse, P.F., Richardson, E.V., Schall, J.D. 1998. Instrumentation for Monitoring Scour at Bridges. Transportation Research Record No. 1647, Highway Facility Design, Transportation Research Board, National Research Council, National Academies of Science,Washington, DC.
  • Lagasse, P.F., Schall, J.D., Richarson, E.V. 2001a. Stream Stability at Highway Structures. Hydraulic Engineering Circular 20, Third Edition, FHWA NHI 01-002. Federal Highway Administration, U.S. Department of Transportation,Washington, DC.
  • Lagasse, P.F., Zevenbergen, L.W., Schall, J.D., Clopper, P.E. 2001b. Bridge Scour and Stream Instability Countermeasures. Hydraulic Engineering Circular 23, Second Edition, FHWA NHI -01-003, Federal Highway Administration,Washington, DC.
  • Lischtvan, L.L., Lebediev, V.V. 1959. Gidrologia i Gidraulika v Mostovom Doroshnom, Straitielvie. Leningrad (Hydrology and Hydraulics in Bridge and Road Building), Gidrometeoizdat, Leningrad.
  • Levi, J. 1981. Bed-Load Transport -Theory and Practice. Water Resources Publ., Michigan, pp. 303-355.
  • Lounis, Z. 2004. Risk-based maintenance optimization of bridge structures. 2nd International Colloquium on Advanced Structural Reliability Analysis Network (ASRANet), Barcelona, Spain, pp. 1-9.
  • Maizels, J.K. 1983. Palaeovelocity and palaeodischarge determination for coarse gravel deposits. In Background to Palaeohydrology: A Perspective, K.J. Gregory (ed.), John Wiley & Sons, New York, pp. 101-139.
  • Martin Vide, J.P. 1997. Ingeniería Fluvial. Politext 58, Àrea d’Enginyería Civil. Ediciones UPC, Universitat Politecnica de Catalunya, Barcelona, 209 pp.
  • Martin Vide, J.P., Rosello Estelrich, R., Ninerola Chifoni, D., Gomez Navarro, L. 1993. La avenida del 9 de septiembre de 1992 en la riera de las Arenas. Departamento de Ingenieria Hidraulica, Maritima y Ambiental, Universidad Politecnica de Cataluna, Barcelona.
  • Maza, J.A., Garcia Flores, M. 1997. Velocidades medias para el inicio del movimiento de particulas. V Congreso Nacional de Hidráulica, Guadalajara, pp. 70-88.
  • MOPU 1965. Instrucción de Carreteras 5.1-IC “Drenaje” MOPU – Ministerio de Obras Públicas y Urbanismo, Orden Ministerial de 21 de junio 1965. Madrid, BOE, 17 de septiembre de 1965.
  • MOPU 1990. Norma 5,1-I.C., Instrucción de carreteras. Direccion General de Carreteras, MOPU.
  • NCHRP 1979. Bridge Drainage Systems. National Cooperative Highway Research Program (USA), Synthesis of Highway Practices 67.
  • Neill, C.R. 1968. Note on initial movement of coarse uniform bed material. Journal of Hydraulic Research 6(2), 157-184.
  • Neill, C.R. (ed) 1973. Guide to Bridge Hydraulics. Roads and Transportation Association of Canada, University of Toronto Press, Toronto, Canada.
  • NRB 1977. Highway Surface Drainage – Design Guide for Highways with a Positive Collection System. National Roads Board, USA.
  • Pedernal Alvarez, J., Barahona Fernandez, I. 2004. Localizacion. Carreteras. Revista técnica de la Asociación Española de la Carretera 136, 120-138.
  • Richardson, E.V., Davis, S.R. 2001. Evaluating Scour at Bridges. Hydraulic Engineering Circular 18, Fourth Edition, FHWA NHI 01-001, Federal Highway Administration, US Department of Transportation,Washington, DC.
  • Richardson, E.V., Simons, D.B., Lagasse, P.F. 2001. River Engineering for Highway Encroachments - Highways in the River Environment. Hydraulic Design Series 6, FHWA NHI 01-004, Federal Highway Administration,Washington, DC.
  • Shields, A. 1936. Anwendung der Anlichkeits-Mechanik und der Turbulenzforschung auf die Geschiebe-bewegung. Preussische Versuchsanstalt für Wasserbau und Schiffbau 26, Berlin.
  • Sobanjo, J., Mtenga, P., Rambo-Roddenberry, M. 2010. Reliability-Based Modeling of Bridge Deterioration Hazards. Journal of Bridge Engineering 15 (6), 671-684.
  • TRB (1999). 1998 Scanning Review of European Practice for Bridge Scour and Stream Instability Countermeasures. Transportation Research Board. National Cooperative Highway Research Program, Research Results Digest, No 241,Washington, DC.
  • US Department of Transportation 2001. Bridge Scour and Stream Instability Countermeasures. Experience, Selection, and Design Guidance, Third Edition, Publication No. FHWA NHI HEC-23, Federal Highway Aministration,Washington, DC.
  • US Department of Transportation 2009. Evaluating Scour at Bridges, Fourth Edition, Publication No. FHWA NHI 01-001, Federal Highway Administration,Washington, DC.
  • Van Rijn, L.C. 1984. Sediment Transport: Bed-Load Transport, Part I. J. Hydraulic Eng. ASCE 10(11), 1431-1456.
  • Venditti, J.G., Dietrich, W.E., Nelson, P.A., Wydzga, M.A., Fadde, J., Sklar, L. 2010. Mobilization of coarse surface layers in gravel-bedded rivers by finer gravel bedload. Water Resources Research 46, W07506.
  • Woo, D.C. 1988. Bridge Drainage System Needs Criteria. Public Roads 52 (2). Yang, T., Hsu, Y.S. 2010. Risk-based Multiobjective Optimization Model for Bridge Maintenance Planning. In Proceedings of the 2nd International Symposium on Computational Mechanics and the 12th International Conference on the Enhancement and Promotion of Computational Methods in Engineering and Science, AIP American Institute of Physics, 1233, pp. 477-482.