Alternativas a la enseñanza de la genética en educación secundaria

  1. Ayuso Fernández, Gabriel Enrique
  2. Banet Hernández, Enrique
Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Ano de publicación: 2002

Volume: 20

Número: 1

Páxinas: 133-158

Tipo: Artigo

DOI: 10.5565/REV/ENSCIENCIAS.3983 DIALNET GOOGLE SCHOLAR lock_openDDD editor

Outras publicacións en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Obxectivos de Desenvolvemento Sustentable

Referencias bibliográficas

  • ALBALADEJO, C. y LUCAS, A.M. (1988). Pupils’ meanings for «mutation». Journal of Biological Education, 22(3), pp. 215-219.
  • AYUSO, G.E. (2000). La enseñanza de la herencia biológica y la evolución de los seres vivos. Fundamentación, planificación, aplicación y evaluación de una propuesta didáctica para la educación secundaria obligatoria. Murcia: Universidad de Murcia.
  • AYUSO, G.E. y BANET, E. (1997). Dificultades de los estudiantes de enseñanza secundaria para resolver problemas sobre la herencia biológica, en Jiménez, R. y Wamba, A.M. (eds.). Avances en la didáctica de las ciencias experimentales, pp. 73-82. Huelva: Universidad de Huelva.
  • AYUSO, G.E., BANET E. y ABELLÁN, M.T. (1996). Introducción a la genética en la enseñanza secundaria y el bachillerato: II. ¿Resolución de problemas o realización de ejercicios? Enseñanza de las Ciencias, 14(2), pp. 127-142.
  • BANET, E. (2001). Los procesos de nutrición humana. Madrid: Síntesis.
  • BANET, E. y AYUSO, G.E. (1995). Introducción a la genética en la enseñanza secundaria y bachillerato: I. Contenidos de enseñanza y conocimientos de los alumnos. Enseñanza de las Ciencias, 13(2), pp. 137-153.
  • BANET, E. y AYUSO, G.E. (2000). Teaching Genetics at Secondary School: a strategy for teaching about the localitation of Inheritance information. Science Education, 84(3), pp. 313-351.
  • BANET, E. y NÚÑEZ, F. (1997). Teaching and learning about human nutrition: a constructivist approach. International Journal of Science Education, 19(10), pp. 1169-1194.
  • BANET, E., MARTÍNEZ SEGURA, M.J. y PRO, A. (1999). Diseño, aplicación y evaluación del módulo «Estudio de la alimentación, salud y consumo», en De Pro, A. y Banet, E. (eds.). Constructivismo y enseñanza de las ciencias: planificación, desarrollo y evaluación de propuestas para la educación secundaria, pp. 109-181. Murcia: DM editorial.
  • BIZZO, N. (1994). From Down House Landlord to Brazilian High School Students: What has happened to Evolutionary knowledge on the way? Journal of Research in Science Teaching, 31(5), pp. 537-556.
  • BLISS, J. (1995). Piaget an after: the case of learning science. Studies in Science Education, 25, pp. 139-172.
  • BROWN, C.R. (1990). Some misconceptions in meiosis shown by students responding to an Advanced level practical examination question in biology. Journal of Biological Education, 24(3), pp. 182-186.
  • CAREY, S. (1985). Conceptual change in childhood. Cambrigde: MIT Press.
  • CHO, H., KAHLE, J. y NORDLAND, F. (1985). An investigation of high school biology textbooks as sources of misconceptions and difficulties in genetics: Some suggestions for Teaching Genetics. Science Education, 69(5), pp. 707-719.
  • CLOUGH, E.E. y WOOD-ROBINSON, C. (1985). Children’s understanding of inheritance. Journal of Biological Education, 19(4), pp. 304-310.
  • COLLINS, A. y STEWART, J.H. (1989). The knowledge structure of Mendelian Genetics. The American Biology Teacher, 51(3), pp. 143-149.
  • DEADMAN, J.A. y KELLY, P.J. (1978). What do secondary schoolboys understand about evolution and heredity before they are taught the topics? Journal of Biological Education, 12(1), pp. 7-15.
  • DRIVER, R. (1988). Un enfoque constructivista para el desarrollo del currículo de ciencias. Enseñanza de las Ciencias, 6(2), pp. 109-120.
  • DRIVER, R. (1989). Students’ conceptions and the learning of Science. International Journal of Science Education, 11(5), pp. 481-501.
  • DRIVER, R. y OLDHAM, V. (1986). A constructivist approach to curriculum development in Science. Studies in Science Education, 13, pp. 105-112.
  • DUSCHL, R.A. (1997). Renovar la enseñanza de las ciencias: importancia de las teorías y su desarrollo. Madrid: Narcea.
  • DUSCHL, R.A. (1998). La valoración de argumentaciones y explicaciones: promover estrategias de retroalimentación. Enseñanza de las Ciencias, 16(1), pp. 3-20.
  • FINLEY, F.N., STEWART, J.H. y YARROCH, W.I. (1982). Teachers’ Perceptions of Important and Difficult Science Content. Science Education, 66(4), pp. 531-538.
  • GARRISON, J. (1997). An alternative to Von Glasersfeld’s subjectivism in science education: deweyan social constructivism. Science & Education, 6(1-2), pp. 301-312.
  • GEELAN, D.R. (1997). Epistemological anarchy and the many forms of constructivism. Science & Education, 6(1-2), pp. 15-28.
  • GIL, D. (1993). Contribución de la historia y de la filosofía de las ciencias al desarrollo de un modelo de enseñanza-aprendizaje como investigación. Enseñanza de las Ciencias, 11(2), pp. 197-212.
  • GIL, D. y CARRASCOSA, J. (1994). Bringing pupils’ learning closer to a Scientific Construction of Knowledge: a permanent feature in innovations in Science Teaching. Science Education, 78(3), pp. 301-315.
  • GIL, D., FURIÓ, C., VALDÉS, P., SALINAS, J., MARTÍNEZTORREGROSA, J., GUISASOLA, J., GONZÁLEZ, E., DUMAS-CARRÉ, A., GOFFARD, M. y PESSOA DE CARVALHO, A. (1999). ¿Tiene sentido seguir distinguiendo entre aprendizaje de conceptos, resolución de problemas de lápiz y papel y realización de prácticas de laboratorio? Enseñanza de las Ciencias, 17(2), pp. 311-320.
  • GLYNN, S.M. y DUIT, R. (1995). Learning science in schools. Hillsdale, Nueva Jersey: Erlbaum.
  • GUNSTONE, R.F., GARY, M.R. y SEARLE, P. (1992). Some long-term effects of uniformed conceptual change. Science Education, 76(2), pp. 175-199.
  • HACKLING, M. y TREAGUST, D. (1984). Research data necessary for meaningful review of grade ten high school genetics curricula. Journal of Research in Science Teaching, 21(2), pp. 197-209.
  • HARDY, M.D. y TAYLOR, P.C. (1997). Von Glasersfeld’s radical constructivism: a critical review. Science & Education, 6(1-2), pp. 135-150.
  • HEWSON, P.W. y THORLEY, N.R. (1989). The conditions of Conceptual Change in the classroom. International Journal of Science Education, 11, pp. 541-553.
  • HODSON, D. (1994). Hacia un enfoque más crítico del trabajo de laboratorio. Enseñanza de las Ciencias, 12(3), pp. 299- 313.
  • JENSEN, M.S. y FINLEY, F.N. (1995). Teaching Evolution using a historical arguments in a conceptual change strategy. Science Education, 79(2), pp. 147-166
  • JOHNSON, M.A. y LAWSON, A.E. (1998). What are the relative effects of reasoning ability and prior knowledge on Biology achievement in expository and inquiry classes? Journal of Research in Science Teaching, 35(1), pp. 89-103.
  • KINDFIELD, A. (1994a). Understanding a basic Biological Process: Expert and novice models of meiosis. Science Education, 78(3), pp. 255-283.
  • KINDFIELD, A. (1994b). Assessing Understanding of Biological Process: elucidating students’ models of Meiosis. The American Biology Teacher, 56(6), pp. 67-371.
  • KINNEAR, J. (1983). Identification of misconceptions in genetics and the use of computer simulations in their correction. En Helm, H. y Novak, J.D. (eds.). First International Seminar on Misconceptions and educational strategies in Science and Mathematics, pp. 84-92. Ithaca, Nueva York: Cornell University Press.
  • LAWSON, A.E. (1988). The acquisition of Biological knowledge during childhood: cognitive conflict or tabula rasa? Journal of Research in Science Teaching, 25(3), pp. 185-199.
  • LEWIS, J., LEACH, J. y WOOD-ROBINSON, C. (2000a). All in the Genes? Young people’s understanding of the Nature of Genes. Journal of Biological Education, 34(2), pp. 74-79.
  • LEWIS, J., LEACH, J. y WOOD-ROBINSON, C. (2000b). What’s in a Cell? Young people’s understanding of the Genetic relationship between Cells, within an individual. Journal of Biological Education, 34(3), pp. 129-132.
  • LEWIS, J., LEACH, J. y WOOD-ROBINSON, C. (2000c). Chromosomes: The missing link. Young people’s understanding of Mitosis, Meiosis, and Fertilisation. Journal of Biological Education, 34(4), pp. 89-199.
  • LONGDEN, B. (1982). Genetics: Are there inherent learning difficulties? Journal of Biological Education, 16(2), pp. 135-140.
  • LLORT, J.M. y GARCÍA, M.P. (1997). El juego de los genes. V Congreso Internacional sobre la Investigación e Innovación en la Didáctica de las Ciencias. Murcia, pp. 255-256.
  • MATTHEWS, M.R. (1994). Vino viejo en botellas nuevas: un problema con la metodología constructivista. Enseñanza de las ciencias, 12(1), pp. 79-88.
  • MATTHEWS, M.R. (1997). Introductory comments on philosophy and constructivism in science education. Science & Education, 6(1-2), pp. 5-14.
  • MILLAR, R. (1989). Constructive criticisms. International Journal of Science Education, 11(3), pp. 587-596.
  • NEEDHAM, R. y SCOTT, P. (1987). Teaching Strategies for Developing Understanding in Science. University of Leeds: Centre for Studies in Science and Mathematics Education
  • NOLA, R. (1997). Constructivism in science and science education: a philosophical critique. Science & Education, 6(1-2), pp. 55-83.
  • NOVAK, J.D. (1988). Constructivismo humano: un consenso emergente. Enseñanza de las Ciencias, 6(3), pp. 213-223.
  • OGBORN, J. (1997). Constructivist metaphors of learning science. Science & Education, 6(1-2), pp. 121-133.
  • OGBORN, J., KRESS, G., MARTINS, I. y McGILLIKUDAY, K. (1998). Formas de explicar. Madrid: Santillana.
  • O’LOUGHLIN, M. (1992). Rethinking science education: beyond piagetian constructivism toward a sociocultural model of teaching and learning. Journal of Research in Science Teaching, 29(8), pp. 791-820.
  • OSBORNE, J.F. (1996). Beyond constructivism. Science Education, 80(1), pp. 53-82.
  • OSBORNE, R. y WITTROCK, M. (1983). Learning Science: a Generative Process. Science Education, 67(4), pp. 489-508.
  • OSBORNE, R. y FREYBERG, P. (1985). Learning and Science: the implications of «Children’s Science». Nueva Zelanda: Heinemann Educational.
  • PASHLEY, M. (1994) A-level students: Their problems with gene and allele. Journal Biological Education, 28(2), pp. 120-126.
  • PINES, A. y WEST, L. (1986). Conceptual understanding and Science Learning: An interpretation of research within sourcesof-knowledge framework. Science Education, 70(5), pp. 583-604.
  • POZO, J.I. y GÓMEZ CRESPO, M.A. (1998). Aprender y enseñar ciencia. Morata: Madrid.
  • POSNER, G.J., STRIKE, K.A., HEWSON, P.W. y GERTZOG, W.A. (1982). Accommodation of a Scientific Conception: Toward a Theory of Conceptual Change. Science Education, 66(2), pp. 211-227.
  • RADFORD, A. y BIRD-STEWART, J.A. (1982). Teaching Genetics in schools. Journal of Biological Education, 16(3), pp. 177-180.
  • RAMOROGO, G. y WOOD-ROBINSON, C. (1995). Botswana Children’s Understanding of Biological Inheritance. Journal of Biological Education, 29(1), pp. 60-71.
  • RESNICK, L.B. (1983). Mathematics and science learning: a new conception. Science, 220, pp. 477-478.
  • RUMELHART, D.E. y NORMAN, D.A. (1981). Analogical processes in learning, en Anderson, J.R. (ed.). Cognitive Skills and their Acquisition. Hillsdale, Nueva Jersey: Lawrence Erlbaum Associates.
  • SIMMONS, P.E. (1987). «Misconceptions of experts and novices during Genetics computer simulation». Proceeding of the International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, pp. 447-451. Ithaca, Nueva York: Cornell University, II.
  • SLACK, S. y STEWART, J.H. (1990). High school students’ problem solving performance on realistic genetics problem. Journal of Research in Science Teaching, 27(1), pp. 55-67.
  • SMITH, M.U. y GOOD, R. (1984). Problem solving and classical genetics, «Successful versus unsuccessful performance. Journal of Research in Science Teaching, 21(9), pp. 895-912.
  • SOLOMON, J. (1994). The rise and fall of constructivism. Studies in Science Education, 23, pp. 1-19.
  • STEWART, J.H. (1982). Difficulties Experienced by High School Students when learning basic Mendelian Genetics. The American Biology Teacher, 44(2), pp. 80-89.
  • STEWART, J.H. (1983). Student problem solving in High School Genetics. Science Education, 67(4), pp. 523-540.
  • STEWART, J.H., STREIBEL, M. y COLLINS, A. (1987). «Computers as tutors: Mendel as an example». Proceedings of International Seminar on Misconceptios and Educational Strategies in Science and Mathematics. Ithaca, Nueva York: Cornell University, II, pp. 477-489.
  • STEWART, J.H., HAFNER, B. y DALE, M. (1990). Students’ alternate views of Meiosis. The American Biology Teacher, 52(4), pp. 228-232.
  • THOMPSON, N. y STEWART, J.H. (1985). Secondary school genetics instruction: «Making problem solving explicit and meaningful». Journal of Biological Education, 19(1), pp. 53-62.
  • VICENTINI, M. (2001). Comunicación personal.
  • WHEATLEY, G.H. (1991). Constructivist perspectives on Science and Mathematics learning. Science Education, 75(1), pp. 9-21.
  • WOOD-ROBINSON, C. (1994). Young people’s ideas about Inheritance and Evolution. Studies in Science Education, 24, pp. 29-47.
  • WOOD-ROBINSON, C., LEWIS, J, LEACH, J. y DRIVER, R. (1997). «Young people’ understanding of the nature of genetics information in the cells of an organism». First Conference of the European Science Education Research Association. Rome.