Análisis genómico-funcional de la regulación de la expresión génica por la luz en el hongo Mucor circinelloides

  1. Lopez Garcia, Sergio
Supervised by:
  1. Victoriano Garre Mula Director
  2. Santiago Rafael Torres Martínez Director

Defence university: Universidad de Murcia

Fecha de defensa: 02 February 2016

Committee:
  1. María Jesús MartÍnez Hernández Chair
  2. Eusebio Navarro Ros Secretary
  3. Francisco Javier Ávalos Cordero Committee member
Department:
  1. Genetics and Microbiology

Type: Thesis

Abstract

Light induces a wide variety of responses related to cell physiology and behavior of many organisms. Knowledge of the molecular mechanisms involved in the regulation of these responses is undoubtedly one of the great challenges of molecular biology. Filamentous fungi, such as Neurospora crassa, have contributed to the knowledge of some of the molecular mechanisms involved in responses to light. The characterization of the white collar-1 and white collar-2 (wc-1 and wc-2), two key genes in all responses in the light of this fungus, has been crucial in the development of such knowledge. Moreover, the carotenoid biosynthesis in fungi such as itself N. crassa or cigomiceto Phycomyces blakesleeanus, is one of the responsess to light that more attention has been received by a large number of researchers. The fungus Mucor circinelloides, another cigomiceto, responds to blue light significantly increasing the synthesis of carotenoids. In M. circinelloides carotenogenesis is controlled by a crgA, gene that codes a RING-finger repressor protein of the carotenogenesis. This gene is evolutionarily conserved from yeast to humans and, therefore, it is not an exclusive gene carotenogenesis. In fact, itself M. circinelloides also regulates development processes such as the formation of aerial hyphae and production of asexual spores. This gene is present in almost all eukaryotes, but has only been studied in fungi mainly in M. circinelloides. The gene crgA regulates carotenogenesis through expression control of mcwc-1b gene. Specifically, CrgA protein is directly or indirectly involved in the addition of one or two ubiquitin to mcwc-1b protein, resulting in its inactivation, but not degradation. This thesis has been characterized in detail the molecular basis of this mechanism, which has included when specific goals as characterization of oligoubiquitilación of mcwc-1b, identification and characterization genes regulated by crgA dependent or independent of mcwc-1b and genes exclusively regulated by mcwc-1b. By mutagenesis has been identified lysine is the target crgA mediated ubiquitylation. By transcriptomic analysis has determined that the expression of at least 350 genes, representing about 3% of the genes identified in M. circinelloides, it depends crgA, revealing the important role of crgA in regulation of gene expression. The regulation is mainly exerted by crgA through mcwc-1b, however, both are capable of regulating the expression of some genes independently. It found an enrichment of genes involved in amino acid metabolism and secondary metabolites regulated by crgA. The regulation of such a basic amino acid synthesis as aspect could mean that this gene can also perform this function in higher eukaryotes. This thesis has characterized response to light of M. circinelloides at the transcriptome level. M. circinelloides presents three genes homologous to gene wc-1 (mcwc-1a, mcwc-b and mcwc-1c). In This thesis has been raised the characterization at the molecular level responses to light in M. circinelloides and the involvement of three genes wc-1. Transcriptome analysis in this thesis has identified 146 genes (1.24% of the genome) regulated by light, many of them through mcwc-1a, indicating that it is the main control element of responses to light. The existence of genes induced by light in mutants mcwc-1a?, suggests that other photoreceptors that may be characterized in future research.