Sumersiones pseudo-riemannianas y modelos geométricos de partículas relativistas

  1. JAVALOYES VICTORIA MIGUEL ÁNGEL
Supervised by:
  1. Ángel Ferrández Izquierdo Director
  2. Pascual Lucas Saorín Co-director

Defence university: Universidad de Murcia

Fecha de defensa: 26 February 2004

Committee:
  1. José manuel Barros García Chair
  2. Luis José Alías Linares Secretary
  3. Oscar Jesús Garay Bengoechea Committee member
  4. Anna María Candela Committee member
  5. Miguel Sánchez Caja Committee member
Department:
  1. Mathematics

Type: Thesis

Teseo: 102435 DIALNET

Abstract

El contenido de la memoria está integrado por tres partes diferenciadas. En la primera, se estudia la condición Delta H=lambda H en levantamiento mediante sumersiones pseudo-riemannianas. En la segunda parte, se estudian lagrangianos cuya función lagrangiana depende de las curvaturas de Frenet. Las curvas críticas de estos lagrangianos han sido propuestas y utilizadas por M. Plyushchay para modelizar partículas relativistas. En este trabajo se hace un estudio general del caso en que el espacio ambiente es un espacio modelo de dimensión tres, obteniendo las curvas de forma explícita en algunos casos mediante los campos de Kiling y en otros mediante las fibraciones de Hopf. En espacios modelo de dimensión mayor que 3 se analiza el caso en que la función lagrangiana depende linealmente de la segunda curvatura obteniendo explícitamente las curvas críticas en dimensión 4. También se estudia el caso en que el lagrangiano depende linealmente de la primera y tercera curvaturas, pero en este caso sólo se obtienen las curvaturas. En la última parte, se estudia la existencia de trayectorias T-periódicas de la fuerza de Lorentz en una variedad Lorentziana que está dotada de una determinada métrica, que verifica ciertas restricciones. Aplicando la teoría del punto crítico y haciendo uso de la métrica de Kaluza-Klein se demuestra efectivamente la existencia de tales trayectorias.