Diferencias cinemáticas en saltadoras de altura nacionales de diferente categoría de edad 

  1. Bermejo Frutos, J. 1
  2. Palao Andrés, José Manuel 2
  3. López Elvira, J. L. 3
  1. 1 Universidad Católica San Antonio de Murcia (UCAM)
  2. 2 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  3. 3 Universidad Miguel Hernández de Elche
    info

    Universidad Miguel Hernández de Elche

    Elche, España

    ROR https://ror.org/01azzms13

Revista:
Kronos: revista universitaria de la actividad física y el deporte

ISSN: 1579-5225

Año de publicación: 2012

Volumen: 11

Número: 2

Páginas: 61-70

Tipo: Artículo

Otras publicaciones en: Kronos: revista universitaria de la actividad física y el deporte

Resumen

El objetivo de este estudio fue fijar las variables biomecánicas que más correlacionan con el rendimiento del salto de altura en función del grupo de edad. Se analizó el mejor salto de las finalistas en el campeonato nacional: 11 saltadoras de categoría cadete, nueve de categoría junior, y 12 de categoría senior. Se calcularon 25 variables de cada salto (fases de ante-salto, batida, y paso del listón). La técnica utilizada para analizar el salto fue la fotogrametría 3D empleando tres cámaras de vídeo (50 Hz). Se realizó un análisis descriptivo e inferencial (correlación lineal de Spearman). Las variables cinemáticas que correlacionan con el rendimiento son diferentes en cada grupo de edad, salvo la altura del CM sobre el listón. Los resultados parecen indicar que la forma de evaluar la técnica y los aspectos clave a considerar no son aplicables por igual a todas las categorías de edad.

Referencias bibliográficas

  • Abdel-Aziz, Y. I., & Karara, H. M. (1971). Direct Linear Transformation from comparator coordinates into object space coordinates in close-range photogrametry. Symposium on close-range photogrametry (pp. 1-18). Falls Church, VA: American Society of Photogrametry.
  • Andersen, T. B., & Hovgaard, H. (2006). Analysis and visualization of shot put using rotational technique. XXIV Symposium of the International Society of Biomechanics in Sports (p. 1). Salzburg: Austria.
  • Bahamonde, R., & Stevens, R. (2006). Comparison of two methods of manual digitization on accuracy and time of completion. XXIV Symposium of the International Society of Biomechanics in Sports (pp. 680-684). Salzburg: Austria.
  • Blažević, I., Antekolović L., & Mejovšek, M. (2006). Variability of high jump kinematic parameters in longitudinal follow-up. Kinesiology, 38(1), 63-71.
  • Bravo, J., Ruf, H., & Vélez, M. (2003). Saltos verticales. Madrid: RFEA.
  • Bruggemann, G., & Loch, M. (1992). The scientific research project at the III world championships in athletics: High jump. New Studies in Athletics, 7(1), 67-74.
  • Carr, G. (1999). Fundamentals of Track and Field (2ª ed.). Champaign, IL: Human Kinetics.
  • Challis, S., & Yeadon, F. (1992). A biomechanical analysis of the women’s high jump. Athletics Coach, 26(2), 20-25.
  • Čoh, M. (1987). Stability and variability of kinematic and dynamic parameters in high jump. Telesna kultura, 35(4), 13-17.
  • Conrad, A., & Ritzdorf, W. (1986). High jump. New Studies in Athletics, 1(4), 33-51.
  • Dapena, J. (1993). Biomechanical studies in the high jump and the implications for coaching. Modern Athlete and Coach, 31(4), 7-12.
  • Dapena, J. (1996). A biomechanical scientific support program for high jumpers. XIV Symposium of the International Society of Biomechanics in Sports (pp. 68-80). Funchal: Madeira, Portugal.
  • Dapena, J. (1997). Contributions of Angular Momentum and Catting to the Twist Rotation in High Jumping. Journal of Applied Biomechanics, 13(2), 239-253.
  • Dapena, J. (2000). The high jump. En: V. Zatsiorsky, Biomechanics in sport. Blackwell Science, pp. 285-311.
  • Dapena, J., McDonald, C., & Cappaert, J. (1990). A Regression Analysis of High jumping technique. Journal of Applied Biomechanics, 6(3), 246-261.
  • DeLeva, P. (1996). Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameter. Journal of Biomechanics, 29(9), 1223-1230.
  • Greig, M. P., & Yeadon, M. R. (2000). The influence of touchdown parameters on the performance of a high jumper. Journal of Applied Biomechanics, 16(4), 367-378.
  • Han, H., & Li, G. (2000). Kinematic analysis of the take-off in elite Chinese female high jumpers. XVIII Symposium of the International Society of Biomechanics in Sports (p. 954). Hong Kong: China.
  • Isolehto, J., Virmavirta, M., Kyröläinen, H., & Komi, P. V. (2007). Biomechanical analysis of the high jump at the 2005 IAAF World championship in athletics. New Studies in Athletics, 22(2), 17-27.
  • Jaitner, Y. (2002). Comparative analysis of the take off in pole vault and long jump based on time-continuos data. XX Symposium of the International Society of Biomechanics in Sports (pp. 133-136). Caceres: Spain.
  • Knudson, D. & Morrison, C. (2002). Qualitative analysis of human movement. Champaign, IL: Human Kinetics.
  • Krazhev, V. D., Strizhak, A. P., Popov, G. I., & Bobronik, V. I. (1990). A biomechanical analysis of the technique of the world’s top female high jumpers. Soviet Sports Review, 25(2), 64-65.
  • Nolan, L., & Patritti, B. L. (2008). The take-off phase in transtibial amputee high jump. Prosthetis and Orthotics International, 32(2), 160-171.
  • Ozolín, N. G. (1988). Sistema contemporáneo de entrenamiento deportivo. La Habana: Científico Técnica.
  • Reid, P. (1986). The high jump. New Studies in Athletics, 1(1), 47-53.
  • Ritzdorf, W., Conrad, A., & Loch, M. (1989). Intra-individual comparison of the jumps of Stefka Kostadinova at the II World Championships in Athletics Rome 1987 and the Games of the XXIV Olympiad Seoul 1988. New Studies in Athletics, 4(4), 35-41.
  • Salo, A. (2002). Technical changes in hurdle clearances at the beginning of 110 m hurdle event – a pilot study. XX Symposium of the International Society of Biomechanics in Sports (pp. 84-87). Caceres: Spain.
  • Salo, A., Grimshaw, P. N., & Viitasalo, J. T. (1999). The use of motion analysis as a coaching aid to improve the individual technique in sprint hurdles. XVII Symposium of the International Society of Biomechanics in Sports (pp. 57-60). Perth: Australia.
  • Schwameder, H. (2011). Aspects and challenges of applied sport biomechanics research. XXIX Symposium of the International Society of Biomechanics in Sports (pp. 25-28). Porto: Portugal.
  • Slamka, M., & Moravec, R. (1999). Optimization of run-up speed in the women’s high jump. Acta Facultatis Educationis Physicae Universitatis Comenianae, 40, 193-202.
  • Soto, V. M. (1995). Desarrollo de un sistema para el análisis biomecánico tridimensional del deporte y la representación gráfica realista del cuerpo humano. Tesis Doctoral, Facultad de Ciencias de la Actividad Física y el Deporte, Universidad de Granada.
  • Tan, J. C., & Yeadon, M. R. (2005). Why do high jumpers use a curved approach? Journal of Sports Sciences, 23(8), 775-780.
  • Tellez, K. (1993). Elements of the high jump. Track Technique, 125, 3987-3990.
  • Tidow, G. (1993). Model technique analysis-part VIII: The flop high jump. New Studies in Athletics, 8(1), 31-44.
  • Van Gheluwe, B., Roosen, P., & Desloovere, K. (2003). Rearfoot kinematics during initial takeoff of elite high jumpers: estimation of spatial position and orientation of subtalar axis. Journal of Applied Biomechanics, 19(1), 13-27.
  • Winter, D. A., Sidwall, H. G., & Hobson, D. A. (1974). Measurement and reduction of noise in kinematics of locomotion. Journal of Biomechanics, 7(2), 157-159.
  • Wood, G. A., & Jennings, L. S. (1979). On the use of spline functions for data smoothing. Journal of Biomechanics, 12(6), 477-479.
  • Xu, W., & Liu, M. (2005). Kinematic analysis of the run up, final stride and take-off technique in Chinese female fosbury flop jumpers. XXIII Symposium of the International Society of Biomechanics in Sports (pp. 447-448). Beijing: China.