Características y efectos de los métodos resistidos en el sprint

  1. Alcaraz Ramón, Pedro E.
  2. López Elvira, José Luis
  3. Palao Andrés, José Manuel
Revista:
Cultura, ciencia y deporte

ISSN: 1696-5043

Año de publicación: 2009

Volumen: 4

Número: 12

Páginas: 179-188

Tipo: Artículo

DOI: 10.12800/CCD.V4I12.146 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cultura, ciencia y deporte

Resumen

Para la mejora del rendimiento en el sprint se utilizan distintos métodos de entrenamiento, entre los más populares se encuentran los métodos resistidos. Un método resistido para el sprint se caracteriza por utilizar sprints con una sobrecarga o resistencia añadida. Dependiendo de las características del dispositivo, tanto la magnitud como la dirección de la resistencia va a ser diferente. Así, existen distintos tipos de métodos resistidos, estos son: arrastres de trineos o ruedas, lastres de chalecos o cinturones, arrastres de paracaídas, carreras cuesta arriba, e incluso carreras sobre la arena de la playa. El principal objetivo al usar métodos resistidos es mejorar la fuerza específica de los deportistas sin producir una modificación significativa de la técnica del deportista. En el presente trabajo se revisan las características y efectos de los métodos resistidos tanto de forma aguda, como sus efectos a corto, medio y largo plazo.

Referencias bibliográficas

  • Alcaraz, P.E. (2009). Adaptaciones cinemáticas, cinéticas y antropométricas tras un entrenamiento de corta duración con arrastres de trineo en atletas entrenados. [Tesis doctoral]. Universidad Católica San Antonio de Murcia, Guadalupe (Murcia).
  • Alcaraz, P.E. & Palao, J.M. (2007). Medios y métodos de entrenamiento de los especialistas en velocidad y pruebas combinadas de la Región de Murcia. Kronos, 6(11), 53-60.
  • Alcaraz, P.E., Palao, J.M. & Elvira, J.L.L. (2009). Determining the optimal load for sprint training with sled towing. J. Strength Cond. Res., 23(2), 480-485.
  • Alcaraz, P.E., Palao, J.M., Elvira, J.L.L. & Linthorne, N.P. (2008). Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. J. Strength Cond. Res., 22(3), 890-897.
  • Bangsbo, J., Norregaard, L. & Thosoe, F. (1991). Activity profile of competition soccer. Can. J. Sport Sci., 16(2), 110-116.
  • Baughman, M., Takaha, M. & Tellez, T. (1984). Sprint training. NSCA J., 6, 34-36.
  • Behm, D.G. & Sale, D.G. (1993). Intended rather than actual movement velocity determines velocity-specific training response. J. Appl. Physiol., 74(1), 359-368.
  • Bosco, C. (1985). Adaptive response of human skeletal muscle to simulated hypergravity condition. Acta. Physiol. Scand., 124(4), 507-513.
  • Bosco, C., Rusko & Hirvonen. (1986). The effect of extra-load conditioning on muscle performance in athletes. Med. Sci. Sports Exerc., 18, 415-419.
  • Bosco, C., Zanon, S., Rusko, H., Dal Monte, A., Bellotti, P., Latteri, F., et al. (1984). The influence of extra load on the mechanical behavior of skeletal muscle. Eur J Appl Physiol Occup Physiol, 53(2), 149-154.
  • Breizer, V., Tabatashnik, B. & Ivanov, V. (1990). Running with a parachute. Modern Athlete & Coach, 28, 5-6.
  • Cissik, J.M. (2004). Means and Methods of Speed Trining, Part I. Strength Cond. J., 26(4), 24-29.
  • Costello, F. (1985). Training for speed using resisted and assisted methods. NSCA J., 5(6), 74-75.
  • Cronin, J.B., & Hansen, K.T. (2006). Resisted sprint training for the acceleration phase of sprinting. Strength Cond. J., 28, 42-51.
  • Delecluse, C. (1997). Influence of strength training on sprinting performance: Current findings and implications for training. Sports Med., 24, 147-156.
  • Delecluse, C., Van Coppenolle, H., Willens, E., Van Leemputte, D., Diels, R. & Gordis, M. (1995). Influence of high-resistance and high-velocity training on sprint performance. Med. Sci. Sports Exerc., 27(8), 1203- 1209.
  • Dintiman, G.B. (2001). Acceleration and Speed. In B. Foran (Ed.). Highperformance sports conditioning (pp. 176-179). Champaign, Ill: Human Kinetics.
  • Elvira, J.L.L., Alcaraz, P.E., & Palao, J.M. (2006). Effects of different resisted sprint running methods on stride length, stride frequency, and CG vertical oscillation. Paper presented at the XXIV ISBS Symposium 2006, Salzburg.
  • Faccioni, A. (1994a). Assisted and resisted methods for speed development: Part 1. Modern Athlete & Coach, 32(2), 3-6.
  • Faccioni, A. (1994b). Assisted and resisted methods for speed development: Part 2. Modern Athlete & Coach, 32(3), 8-12.
  • Hakkinen, K., Komi, P. V., Alen, M. & Kauhanen, H. (1987). EMG, muscle fibre and force production characteristics during a 1 year training period in elite weight-lifters. Eur. J. Appl. Physiol. Occup. Physiol., 56(4), 419-427.
  • Harrison, A.J., Jensen, R.L. & McCabe, C. B. (2004). The effects of sand dune and hill running on lower limb kinematics and running speed in elite sprinters. Paper presented at the XXII ISBS Symposium 2004, Ottawa.
  • Hay, J.G. (1994). The Biomechanics of Sports Techniques (4th ed.). London: Prentice Hall International.
  • Jakalski, K. (1998). The prons and cons of using resisted and assisted training methods with high school sprinters. Parachutes, tubing and towing. Track Coach, 144, 4585-4589, 4612.
  • Kristensen, G.O., van den Tillaar, R. & Ettema, G.J.C. (2006). Velocity specificity in early-phase sprint training. J. Strength Cond. Res., 20(4), 833-837.
  • Lejeune, T.M., Willems, P.A. & Heglund, N.C. (1998). Mechanics and energetics of human locomotion on sand. The Journal of Experimental Biology, 201, 2071-2080.
  • Letzelter, M., Sauerwein, G. & Burger, R. (1995). Resistance runs in speed development. Modern Athlete & Coach, 33, 7-12.
  • Lockie, R.G., Murphy, A.J. & Spinks, C.D. (2003). Effects of resisted sled towing on sprint Kinematics in field-sport atlethes. J. Strength Cond. Res., 17(4), 760-767.
  • Majdell, R. & Alexander, M.J.L. (1991). The effect of overspeed training on kinematic variables in sprinting. J. Hum. Movement Stud., 21, 19- 39.
  • Mero, A. & Komi, P. (1994). EMG, Force, and power analysis of sprintspecific strength exercises. J. Appl. Biomech., 10, 1-13.
  • Murphy, A.J., Lockie, R.G. & Coutts, A. (2003). Kinematic determination of early acceleration in field sport athletes. J. Sports Sci. Med., 2, 144-150.
  • Murray, A., Aitchison, T.C., Ross, G., Sutherland, K., Watt, I., McLean, D., et al. (2005). The effect of towing a range of relative resistances on sprint performance. J. Sports Sci., 23(9), 927-935.
  • Paradisis, G.P. & Cooke, C.B. (2001). Kinematic and postural characteristics of sprint running on sloping surfaces. J Sports Sci, 19, 149-159.
  • Paradisis, G.P. & Cooke, C.B. (2006). The effects of sprint running training on sloping surfaces. J. Strength Cond. Res., 20(4), 767-777.
  • Pauletto, B. (1991a). Maximizing speed with speed chute. Scholastic Coach, 60(2), 50-51.
  • Pauletto, B. (1991b). The speed chute. Nat Strength Cond Assoc J, 13(4), 47-48.
  • Sheppard, J. (2004). The use of resisted and assisted training methods for speed development: coaching considerations. Modern Athlete & Coach, 42, 9-13.
  • Spinks, C.D., Murphy, A.J., Spinks, W.L. & Lockie, R. G. (2007). The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and australian football players. J. Strength Cond. Res., 21(1), 77-85.
  • Tabachnik, B. (1992). The speed chute. NSCA J., 14(4), 75-80. Young, W., Benton, D., Duthie, G. & Pryor, J. (2001). Resistance training for short sprints and maximum-speed sprints. Strength Cond. J., 23(2), 7-13.
  • Young, W.B. (2006). Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 1(2), 74-83.
  • Zafeiridis, A., Saraslanidis, P., Monou, V., Ioakimidis, P., Dipla, K. & Kellis, S. (2005). The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance. J. Sports Med. Phys. Fitness, 45, 284-290.
  • Zatsiorsky, V.M. (1995). Science and practice of strength training. Champaign, Ill: Human Kinetics