Polos fríos en el Calar de Hernán Pelea y Cabrilla (Jaén, España), factores sinópticos y de microescala

  1. David Espín Sánchez
  2. Carmelo Conesa García
  3. Jorge Olcina Cantos
Revista:
BAGE. Boletín de la Asociación Española de Geografía

ISSN: 0212-9426 2605-3322

Año de publicación: 2021

Número: 90

Tipo: Artículo

DOI: 10.21138/BAGE.3140 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: BAGE. Boletín de la Asociación Española de Geografía

Resumen

Los extensos e inhóspitos calares ubicados en las Sierra de Segura y Cabrilla (divisoria entre las demarcaciones hidrográficas del Segura y Guadalquivir) presentan un estereotipo microclimático caracterizado por inviernos extremadamente fríos, con temperaturas mínimas absolutas cercanas a -30ºC en invierno, y -10ºC y -15ºC en otoño y primavera respectivamente. Los datos registrados han sido obtenidos de una red propia de termómetros registradores (datalogger) entre octubre de 2016 y febrero de 2021 (con un total de cinco inviernos de observación). A través del análisis estadístico de datos diezminutales y diarios de tres puntos de observación (Monterilla, Navalasno y Nava del Polvo), imágenes satelitales (VIIRS LST) y reanálisis mesoescalares es posible llevar a cabo la primera descripción climática del área de estudio, así como la identificación de los factores desencadenantes (sinópticos y de microescala) de las temperaturas mínimas extremas registradas, y el análisis de la tipología de los procesos de inversión térmica nocturna (ITN) y las piscinas de aire frío (CAP) generadas en el área de estudio. A pesar de que el tipo de piscina fría predominante es la de erosión turbulenta (39,0 %), los procesos de estabilidad nocturno son intensos (CINV entre 7,6 y 12,5ºC).

Referencias bibliográficas

  • Agencia Estatal de Meteorología (2021). Informe sobre el episodio meteorológico de fuertes nevadas y precipitaciones ocasionadas por borrasca Filomena y posterior ola de frío. Ministerio para la transición ecológica y el reto demográfico. Retrieved from https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/Informe_episodio_filomena.pdf
  • Arduini, G., Chemel, C., & Staquet, C. (2020). Local and non‐local controls on a persistent cold‐air pool in the Arve River Valley. Quarterly Journal of the Royal Meteorological Society, 146(731), 2497-2521. https://doi.org/10.1002/qj.3776
  • Asanza, F. (2018). Project AEMET miniMET. Acta de las Jornadas Científicas de la Asociación Meteorológica Española, 1(35). https://doi.org/10.30859/ameJrCn35p34
  • Aupí, V. (2013). El triángulo de hielo. Dobleuve Comunicación.
  • Barr, S., & Orgill, M. (1989). Influence of external meteorology on nocturnal valley drainage winds. Journal of Applied Meteorology, 28(6), 497-517. https://doi.org/10.1175/1520-0450(1989)028<0497:IOEMON>2.0.CO;2
  • Bailey, A.; Chase, T. N.; Cassano, J.J., & Noone, D. (2011). Changing Temperature Inversion Characteristics in the U.S. Southwest and Relationships to Large-Scale Atmospheric Circulation. Journal of Applied Meteorology and Climatology, 50, 1307-1323. https://doi.org/10.1175/2011JAMC2584.1
  • Biernat, K. A., Bosart, L. F., & Keyser, D. (2021). A climatological analysis of the linkages between tropopause polar vortices, cold pools, and cold air outbreaks over the central and eastern United States. Monthly Weather Review, 149(1), 189-206. https://doi.org/10.1175/MWR-D-20-0191.1
  • Clements, C.B., Whiteman, C.D., & Horel, J.D. (2003). Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. Journal of Applied Meteorology, 42(6), 752-768. https://doi.org/10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2
  • Colgan, S., Sun, X., & Holmes, H. (2019, December). A Review of Cold Air Pool Events in the Intermountain West using Radiosondes and the North American Mesoscale Model (NAM). In AGU Fall Meeting Abstracts (pp. A51O-2861).
  • Conangla, L., Cuxart, J., Jiménez, M. A., Martínez‐Villagrasa, D., Miró, J. R., Tabarelli, D., & Zardi, D. (2018). Cold‐air pool evolution in a wide Pyrenean valley. International Journal of Climatology, 38(6), 2852-2865. https://doi.org/10.1002/joc.5467
  • Crosman, E. T., & Horel, J. D. (2017). Large-eddy simulations of a Salt Lake Valley cold-air pool. Atmospheric Research, 193, 10-25. https://doi.org/10.1016/j.atmosres.2017.04.010
  • Dorninger, M., Whiteman, C.D., Bica, B., Eisenbach, S., Pospichal, B., & Steinacker, R. (2011). Meteorological events affecting cold-air pools in a small basin. Journal of Applied Meteorology and Climatology, 50(11), 2223-2234. https://doi.org/10.1175/2011JAMC2681.1
  • Eisenbach, S., Pospichal, B., Whiteman, C.D., Steinacker, R., & Dorninger, M. (2003). Classification of cold air pool events in the Gstettneralm, a sinkhole in the Eastern Alps. Extended Abstracts, Int. Conf. on Alpine Meteorology and MAP-Meeting, Brig, Switzerland, MeteoSwiss, Publication 66, 157–160.
  • Espín Sánchez, D., & Conesa García, C. (2018). Estudio comparativo del calor extremo entre el Valle del Guadalquivir y las Vegas del Segura: tendencia y cartografía de alta resolución. Revista de Estudios Andaluces, 36, 1-25. https://10.12795/rea.2018.i36.01
  • Flores, F., Arriagada, A., Donoso, N., Martínez, A., Viscarra, A., Falvey, M., & Schmitz, R. (2020). Investigation of a Nocturnal Cold-Air Pool in a Semiclosed Basin Located in the Atacama Desert. Journal of Applied Meteorology and Climatology, 59(12), 19531970. https://doi.org/10.1175/JAMC-D-19-0237.1
  • Foster, C.S., Crosman, E.T., & Horel, J.D (2017). Simulations of a Cold-Air Pool in Utah’s Salt Lake Valley: Sensitivity to Land Use and Snow Cover. Boundary-Layer Meteorol, 164, 63-87. https://doi.org/10.1007/s10546-017-0240-7
  • Fritts, D. C., Bizon, C., Werne, J. A., & Meyer, C. K. (2003). Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. Journal Geophysical Research, 108, 8452. https://doi.org/10.1029/2002JD002406
  • Gómez Zotano, J., Alcántara‐Manzanares, J., Martínez‐Ibarra, E., & Olmedo‐Cobo, J. A. (2015). La sistematización del clima mediterráneo: identificación, clasificación y caracterización climática de Andalucía (España). Revista de Geografía Norte Grande, 61, 161-180. http://dx.doi.org/10.4067/S0718-34022015000200009
  • Gómez Zotano, J., Alcántara‐Manzanares, J., Martínez‐Ibarra, E., & Olmedo‐Cobo, J. A. (2016). Applying the technique of image classification to climate science: the case of Andalusia (Spain). Geographical Research, 54(4), 461-470 https://doi.org/10.1111/1745-5871.12180
  • Grudzielanek, A. M., & Fliegner, M. (2018). Cold-air pool analyses in the Funtensee basin (Berchtesgaden Alps) using thermal imaging. In EGU General Assembly Conference Abstracts (p. 9444).
  • Gudiksen, P. H., Leone Jr, J. M., King, C. W., Ruffieux, D., & Neff, W. D. (1992). Measurements and modeling of the effects of ambient meteorology on nocturnal drainage flows. Journal of Applied Meteorology, 31(9), 1023-1032. https://doi.org/10.1175/1520-0450(1992)031<1023:MAMOTE>2.0.CO;2
  • Guirguis, K., Gershunov, A., Schwartz, R., & Bennett, S. (2011). Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophysical Research Letters, 38(17). https://doi.org/10.1029/2011GL048762
  • Iglesias González, M., Acuña, J.L, García H., Rodríguez, A., Pajares, S., Rodríguez, J., Ruiz-Verdú, A., & Jesús Pérez H. (2018). Proyecto Jous: temperaturas mínimas absolutas en la cordillera cantábrica y su relación con las piscinas de aire frío. In XXXV Jornadas científicas de la AME-19º encuentro hispano-luso de meteorología (p. 218). https://doi.org/10.30859/ameJrCn35
  • Jemmett‐Smith, B., Ross, A. N., & Sheridan, P. (2018). A short climatological study of cold air pools and drainage flows in small valleys. Weather, 73(8), 256-262. https://doi.org/10.1002/wea.3281
  • Kassomenos, P. A., Paschalidou, A. K., Lykoudis, S., & Koletsis, I. (2014). Temperature inversion characteristics in relation to synoptic circulation above Athens, Greece. Environmental monitoring and assessment, 186(6), 3495-3502. https://doi.org/10.1007/s10661-014-3632-x
  • Kelsey, E. P., Cann, M. D., Lupo, K. M., & Haddad, L. J. (2019). Synoptic to Microscale Processes Affecting the Evolution of a Cold-Air Pool in a Northern New England Forested Mountain Valley. Journal of Applied Meteorology and Climatology, 58(6), 1309-1324. https://doi.org/10.1175/JAMC-D-17-0329.1
  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.
  • Lareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O., & Horst, T. W. (2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94(1), 51-63. https://doi.org/10.1175/BAMS-D-11-00255.1
  • Litschauer, D. (1962). Untersuchung der Entwicklung von Kaltluftseen in Dolinen- und Beckenlagen [Investigation of the development of cool air pools in sinkholes and basins] (Doctoral dissertation, University of Vienna).
  • Martínez Núñez, L., Moreno, J. V., Chazarra, A., Gallego Abaroa, T., Avello, E., & Botey, M. R. (2015). Mapas de riesgo: Heladas y horas de frío en la España peninsular (periodo 2002–2012). Agencia Estatal de Meteorología (España).
  • McCaffrey, K., Wilczak, J. M., Bianco, L., Grimit, E., Sharp, J., Banta, R., & Muradyan, P. (2019). Identification and characterization of persistent cold pool events from temperature and wind profilers in the Columbia River Basin. Journal of Applied Meteorology and Climatology, 58(12), 2533-2551. https://doi.org/10.1175/JAMC-D-19-0046.1
  • Miró, J. R., Pagès, M., & Kossman, M. (2010). Cold-air pool detection tools in the Pyrenees valleys. In 14th Conference on Mountain Meteorology. Squaw Valley, CA, United States, August 30–September 3. Retrieved from https://ams.confex.com/ams/14MountMet/webprogram/Paper173620.html
  • Mucha, M. (2021, January 16). -35,8 grados: El récord del paleoclimatólogo Miguel y sus piscinas del frío en la España siberiana. In El Mundo. https://www.elmundo.es/cronica/2021/01/16/6001ea9ffc6c83e77e8b46ae.html
  • Muñoz, R. C., & Armi, L. (2020). The Raco Wind in Central Chile: A Recurring Gap Flow Interacting with a Cold Air Pool. In 19th Conference on Mountain Meteorology. Park City, UT, United States, July 13–18. Retrieved from https://ams.confex.com/ams/19Mountain/webprogram/Paper376301.html
  • Murthy, A. V., & Varghese, S (2004). Nocturnal Temperature Inversions Under Calm Clear Conditions. In Mechanics of the 21st century (Proceedings of the 21st International Congress of Theoretical and Applied Mechanics). Warsaw, Poland, August 15–21.
  • Nafría, D. A., Garrido, N., Álvarez, M. V., Cubero, D., Fernández, M., Villarino, I., & Abia, I. (2013). Atlas Agroclimático de Castilla y León. Madrid: Instituto Tecnológico Agrario de Castilla y León y Agencia Estatal de Meteorología.
  • Neff, W. D., & King, C. W. (1989). The accumulation and pooling of drainage flows in a large basin. Journal of Applied Meteorology, 28(6), 518-529. https://doi.org/10.1175/1520-0450(1989)028<0518:TAAPOD>2.0.CO;2
  • Núñez Mora, J. Á. (2010). Las nuevas redes de datos meteorológicos. Agencia Estatal de Meteorología.
  • OMM (2017). Manual del Sistema Mundial de Observación Volumen I – Aspectos mundiales. Organización Meteorológica Mundial.
  • Pasquill, F. (1961). The estimation of the dispersion of windborne material. Metereology Magazine, (90), 33.
  • Petkovšek, Z. (1992). Turbulent dissipation of cold air lake in a basin. Meteorology and Atmospheric Physics, 47(2-4), 237-245. https://doi.org/10.1007/BF01025620
  • Pfahl, S. (2014). Characterising the relationship between weather extremes in Europe and synoptic circulation features. Natural Hazards and Earth System Sciences, 14(6), 1461-1475. https://doi.org/10.5194/nhess-14-1461-2014
  • Pospichal, B., Eisenbach, S., Whiteman, C.D., Steinacker, R., & Dorninger, M. (2003). Observations of the cold air outflow from a basin cold pool through a low pass. In Extensive Abstract, vol. A. (pp. 153-156). International Conference on Alpine Metereology and the MAP-Meeting Brig, Switzerland, May 19–23.
  • Prandtl, L. (1904). Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg 1904 (pp. 484-491). Leipzig: ed. Teubner.
  • Renon, B. (2011). Le fabbriche naturali del freddo. Dipartimento Regionale per la Sicurezza del Territorio. ARPAV.
  • Sauberer, F., & Dirmhirn, I. (1956). Weitere Untersuchungen über die kaltluftansammungen in der Doline Gstettner-Alm bei Lunz im Niederösterreich (Further investigations of the cold air buildup in the Gstettner-Alm doline near Lunz in lower Austria). Wetter Leben, (8), 187-196.
  • Scherhag, R. (1948). Neue Methoden des Wetteranalyse und Wetterprognose. Springer Verlag Berlin, (179), 227–235.
  • Schmidt, E., & Beckmann, W. (1930). Das Temperatur-und Geschwindigkeitsfeld vor einer Wärme abgebenden senkrechten Platte bei natürlicher Konvektion. Technische Mechanik und Thermodynamik, 1(11), 391-406. https://doi.org/10.1007/BF02660553
  • Schmidt, E., & Beckmann, W. (1930). Das Temperatur-und Geschwindigkeitsfeld vor einer Wärme abgebenden senkrechten Platte bei natürlicher Konvektion. Technische Mechanik und Thermodynamik, 1(11), 391-406. https://doi.org/10.1007/BF02660553
  • Sun, X., Holmes, H. A., & Xiao, H. (2020). Surface Turbulent Fluxes during Persistent Cold-Air Pool Events in the Salt Lake Valley, Utah. Part II: Simulations. Journal of Applied Meteorology and Climatology, 59(6), 1029-1050. https://doi.org/10.1175/JAMC-D-19-0053.1
  • Vihma, T., Kilpeläinen, T., Manninen, M., Sjöblom, A., Jakobson, E., Palo, T., Jaagus, J., & Maturilli, M. (2011). Characteristics of Temperature and Humidity Inversions and Low-Level Jets over Svalbard Fjords in Spring. Advances in Meteorology. https://doi.org/10.1155/2011/486807
  • Vitasse, Y., Klein, G., Kirchner, J. W., & Rebetez, M. (2017). Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theoretical and Applied Climatology, 130(3), 1073-1083. https://doi.org/10.1007/s00704-016-1944-1
  • Vrhovec, T., & Hrabar, A. (1996). Numerical simulations of dissipation of dry temperature inversions in basins. Geofizika, 13(1), 81-96. https://hrcak.srce.hr/18774
  • Whiteman, C. D., & McKee, T. B. (1982). Breakup of temperature inversions in deep mountain valleys: Part II. Thermodynamic model. Journal of Applied Meteorology, 21(3), 290-302. https://doi.org/10.1175/1520-0450(1982)021<0290:BOTIID>2.0.CO;2
  • Whiteman, C.D., (1986). Temperature inversion buildup in Colorado’s Eagle Calley. Meteorology and Atmospheric Physics, 35(4), 220-226. https://doi.org/10.1007/BF01041814
  • Whiteman, C.D., & Barr, S. (1986). Atmospheric mass transport by a long-valley wind systems in a deep Colorado valley. Journal of Climate and Applied Meteorology, 25(9), 1205-1212. https://doi.org/10.1175/1520-0450(1986)025<1205AMTBAV>2.0.CO;2
  • Whiteman, C.D., Bian, X., & Zhong, S. (1997): Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. Journal of Applied Meteorology, 36(10): 1363-1376. https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2
  • Whiteman, C. D. (2000). Mountain meteorology: fundamentals and applications. Oxford University Press.
  • Whiteman, C.D., Zhong, S., Shaw, W.J., Hubbe, J.M., Bian, X., & Mittelstadt, J. (2001). Cold pools in the Columbia Basin. Weather and Forecasting, 16(4). 432-447. https://doiorg/10.1175/1520-0434(2001)016<0432:CPITCB>2.0.CO;2
  • Whiteman, C.D., Pospichal, B., Eisenbach, S., Weihs, P., Clements, C.B., Steinacker, R., & Dorninger, M (2004a). Inversion breakup in small Rocky Mountain and Alpine basins. Journal of Applied Meteorology, 43(8), 1069-1082. https://doi.org/10.1175/1520-0450(2004)043<1069:IBISRM>2.0.CO;2
  • Whiteman, C.D., Haiden, T., Pospichal, B., Eisenbach, S. & Steinacker, R. (2004b). Minimum temperatures, diurnal temperature ranges, and temperature inversions in limestone sinkholes of different sizes and shapes. Journal of Applied Meteorology, 43(8), 1224-1236. https://doi.org/10.1175/1520-0450(2004)043<1224:MTDTRA>2.0.CO;2
  • Whiteman, C.D., Hoch, S.W., Hahnenberge R.M., Muschinski, A., Hohreiter, V., Behn, M., & Clements, C.B. (2008). METCRAX 2006: Meteorological experiments in arizona’s meteor crater. Bulletin of the American Meteorological Society, 89(11), 1665-1680. https://doi.org/10.1175/2008BAMS2574.1
  • Zängl, G. (2005). Formation of extreme cold-air pools in elevated sinkholes: An idealized numerical process study. Monthly Weather Review, 133(4), 925-941. https://doi.org/10.1175/MWR2895.1
  • Zhong, S., Bian, X., & Whiteman, C. D. (2003). Time scale for cold-air pool breakup by turbulent erosion. Meteorologische Zeitschrift, 12(4), 229-233. https://doi.org/10.1127/0941-2948/2003/0012-0231
  • Zhong, S., Whiteman, C. D., Bian, X., Shaw, W. J., & Hubbe, J. M. (2001). Meteorological processes affecting the evolution of a wintertime cold air pool in the Columbia basin. Monthly Weather Review, 129(10), 2600-2613. https://doi.org/10.1175/1520-0493(2001)129<2600:MPATEO>2.0.CO;2
  • Zhou, W., Chan, J. C., Chen, W., Ling, J., Pinto, J. G., & Shao, Y. (2009). Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Monthly Weather Review, 137(11), 3978-3991. https://doi.org/10.1175/2009MWR2952.1