Caracterización de biomateriales pre y post aplicación en un modelo in vivo mediante uso de tomografía computerizada

  1. Adrián Hurtado Bermúdez 1
  2. Nuria García Carrillo 2
  3. Miguel Garcés-Villalá 3
  4. Félix de Carlos- Villafranca 4
  5. Francisco Martínez Martínez 5
  6. María del Carmen González Escudero 1
  1. 1 Universidad Católica San Antonio
    info

    Universidad Católica San Antonio

    Murcia, España

    ROR https://ror.org/05b1rsv17

  2. 2 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  3. 3 Fundación Corazón de Jesús. San Juan Argentina
  4. 4 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

  5. 5 Hospital Universitario Virgen de la Arrixaca. Murcia
Journal:
Labor dental clínica: Avances clínicos en odontoestomatología

ISSN: 1888-4040

Year of publication: 2021

Volume: 22

Issue: 2

Pages: 10-25

Type: Article

More publications in: Labor dental clínica: Avances clínicos en odontoestomatología

Abstract

Objective To establish a method that allows us to characterize pre and post application biomaterials, based on the information provided by micro-computed tomo graphy (micro-CT) and bone density measured in Hounsfield Units (HU). Methodology As a biomaterial, 48 dog teeth were used (Premolars P2, P3, P4 and the first molar M1) that were crus hed with Smart Dentin Grinder, 24 of them were sent for micro-CT analysis and 24 samples were la ter implanted. in the alveoli of 6 Beagle dogs. Biop sies were taken three months after implantation and analyzed with the MicroCT. The methodology used was based on a descriptive statistic of the bone density values measured in HU obtained from the creation of volumes of interest (VOIs) and predefi ned 3D iso-contours from the images obtained after performing micro-CT of the biopsies of the crushed tooth (dentin grinder) and its subsequent analysis with the medical imaging data examiner AMIDE. 1 Graduado en Odontología. Universidad Católica de Murcia. Murcia 2 Veterinaria. Universidad de Murcia. Murcia 3 Doctor en Odontología. Investigador Fundación Corazón de Jesús. San Juan Argentina. 4 Profesor Titular de Ortodoncia. Facultad de Medicina . Universidad de Oviedo. Oviedo 5 Servicio de Ortopedia y Traumatología. Hospital Universitario Virgen de la Arrixaca. Murcia 6 Profesora cirugía bucal. Universidad Católica de Murcia Results The micro-CT allows to establish the characteristics of the biomaterials by studying the HU. There is a marked predominance of bone type D3 density (350-850 HU) in the sample with a mean percenta ge of the three values obtained of 96.14%. There is an absence of bone-type density D2 and D1 in 2 of the regions studied, presenting its maximum value at 805.86 HU and 802.67 HU respectively, with a minimum percentage of bone-type density D2 in the region of interest comprised in the ellipsoid 1 (0.08%). We have found the same in biopsies where the presence of D3 bone density (350-850 HU) is prominent in the analysis of the total volume of the selected region of interest comprised in the cylinder with dimensions of 180x180x180 mm by 61%. Conclusions Micro-CT could be considered a technique of great value in the characterization based on the HU of biomaterials, both before and after implantation in an in vivo model. The described method allows us to evaluate the radiological density of both the bioma terial and the biopsies, being necessary the analysis of several parameters of the tissue microarchitecture beyond the HU to establish a reliable ANALYSIS of the quality of the tissue to be evaluated. The results of the micro-CT analysis showed similar densities in UH, both in the pre-implantation samples and in the post-implantation biopsies, similar to bone density D2-D3

Bibliographic References

  • Arturas Stumbras et al. Alveolar Ridge Preservation after Tooth Extraction Using Different Bone Graft Materials and Autologous Platelet Concentrates: a Systematic Review. J Oral Maxillofac Res 2019;10 (1): e2.
  • Basillais, A., Bensamoun, S., Chappard, C., Brunet-Imbault, B., Lemineur, G., Ilharreborde, B., Ho Ba Tho, M.C. & Benhamou, C.L. (2007) Three-dimensional characterization of cortical bone micros tructure by microcomputed tomography: validation with ultrasonic and microscopic measurements. J Orthop Sci. 2007;12(2):141-8.
  • Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guide lines for assessment of bone microstructure in rodents using microcomputed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486.
  • Britz, H.M., Jokihaara, J., Leppanen, O.V., Jarvinen, T. & Cooper, D.M. (2010) 3D visualization and quantification of rat cortical bone porosity using a desktop micro-CT system: a case study in the tibia. J. Microsc. 240, 32–37.
  • C. Boca et al. Comparison of micro-CT imaging and histology for approximal caries detection. Scientific Reports. 2017; 7:6680.
  • Euclid Seeram et al. Computed Tomography: Physical Principles and Recent Technical Advances. Journal of Medical Imaging and Radiation Sciences. 2010;41(2): 87-109.
  • F J Rühli et al. Diagnostic Value of Micro-CT in Comparison With Histology in the Qualitative Assess ment of Historical Human Skull Bone Pathologies. AMERICAN JOURNAL OF PHYSICAL ANTHROPO LOGY. 2007 Aug;133(4):1099-111.
  • F Particelli et al. A comparison between micro-CT and histology for the evaluation of cortical bone: effect of polymethylmethacrylate embedding on structural parameters. J Microsc. 2012; 245(3):302-10.
  • Hsu JT, Chen YJ, Ho JT, Huang HL, Wang SP, Cheng FC, Wu J, Tsai MT. A comparison of mi cro-CT and dental CT in assessing cortical bone morphology and trabecular bone microarchitecture. PLoS One. 2014;9:1 –8.
  • José Luis Calvo-Guirado et al. Actions of melatonin mixed with collagenized porcine bone versus porcine bone only on osteointegration of dental implants. J. Pineal Res. 2010; 48:194–203.
  • José Luis Calvo-Guirado et al. Particulated, Extracted Human Teeth Characterization by SEM–EDX Evaluation as a Biomaterial for Socket Preservation: An in vitro Study. Materials. 2019 Jan 25;12(3):380.
  • Lehmann, T.M.; Handels, H.; Maier-Hein ne Fritzsche, K.H.; Mersmann, S.; Palm, C.; Tolxdorff, T.; Wagenknecht, G.; Wittenberg, T. Viewpoints on medical image processing: From science to application. Curr. Med. Imaging Rev. 2013, 9, 79–88.
  • Lekhom, U. Zarb G. Patient selection and preparation. En Branemak P-1, Zarb GA, Albrektsson T, eds.: Tissue integrated prostheses:osseintegration in clinical dentistry. Quintessence Publ. 1985;350.
  • Milena Suemi Irie et al. Use of Micro-Computed Tomography for Bone Evaluation in Dentistry. Brazi lian Dental Journal (2018) 29(3): 227-238.
  • Misch C. Bone Classification, training keys to implant success. Dent Today. 1989;8:39–44.
  • Müller R. 2003. Bone microarchitecture assessment - current and future trends. Osteoporosis Int 14:89–99.
  • Nomura Y, Watanabe H, Shirotsu K, Honda E, Sumi Y, et al. (2013) Stability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral content. Clin Oral Implants Res 24: 543-548.
  • Parsa A, Ibrahim N, Hassan B, Stelt P, Wismeijer D (2013) Bone quality evaluation at dental im plant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res doi: 10.1111/clr.12315.
  • R Pauwels et al. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol. 2015;44(1):20140238.
  • R Pauwels. CBCT-based bone quality assessment: are Hounsfield units applicable?. Dentomaxillofacial Radiology. 2015;44(1).
  • Raúl González-García et al. The reliability of cone-beam computed tomography to assess bone den sity at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin. Oral Impl. Res. 2013;24(8):871-879.
  • Robert J. van ’t Hof et al. Analysis of Bone Architecture in Rodents Using Micro-Computed Tomography. Methods Mol Biol. 2012;816:461-476.
  • Smedberg JI, Lothigius E, Bodin I, Frykholm A, Nilner K. A clinical and radiological two year follow-up study of maxillary overdentures on osseointegrated implants. Clin Oral Implants Res. 1993;4(1):39–46.
  • Swain MV, Xue J. State of the art of micro‐CT applications in dental research. Int J Oral Sci. 2009;1(4):177‐188.
  • Takahiro Moussa et sl. Maxillofacial Bone Grafting Materials. Dent Clin N Am. 2020; 64(2):473-490.
  • Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2012 Feb;23 Suppl 5:1-21.