Conceptual baseline for a global checklist of gypsophytes

  1. Mota Poveda, Juan Francisco
  2. Garrido Becerra, Juan Antonio
  3. Pérez-García, Francisco J.
  4. Salmerón-Sánchez, Esteban
  5. Sánchez-Gómez, Pedro
  6. Merlo, Encarna
Revista:
Lazaroa

ISSN: 0210-9778

Año de publicación: 2016

Volumen: 37

Páginas: 7-30

Tipo: Artículo

DOI: 10.5209/LAZA.54044 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Lazaroa

Resumen

El vínculo entre las plantas y los suelos de yeso (gipsofilia) puede remontarse hasta el siglo XIX. Durante los últimos años ha sido creciente el número de artículos que se han ocupado, desde diferentes puntos de vista, de esta flora tan peculiar. La existencia de costras en el suelo, la xericidad y los desequilibrios nutricionales que afrontan estas plantas, algunas de ellas acumuladoras de ciertos minerales, las convierte en interesantes objetos de estudio a diferentes escalas, desde la molecular a la biogeográfica y macroecológica. Estas plantas pueden representar un interesante modelo para el estudio de la evolución y especiación vegetal por el gran número de endemismos que se concentran en los yesos, algunos de ellos muy locales y en no pocos casos seriamente amenazados. De hecho, la Directiva Hábitats de la UE no sólo incluye varias especies gipsófilas, sino que considera a los afloramientos de yeso un hábitat prioritario. La creación de un catálogo o checklist de gipsófitos a nivel global puede impulsar el conocimiento de esta interesante flora. Sin embargo, puesto que existen muchos territorios yesíferos repartidos por todas las regiones de la Tierra, la elaboración de este listado requiere la participación de un gran número de investigadores y expertos locales. Para construir esa checklist, cuatro aspectos fueron considerados de interés en esta investigación. En primer lugar la discusión en torno a si pueden ser considerados sinónimos “planta gipso-tolerante” (capaz de crecer sobre el yeso) y gipsófito, por analogía con “planta resistente a la salinidad” y halófito (o “tolerancia a la salinidad” y “halofilia”). Esta discusión se extendería a los conceptos de gipso-tolerante y gipsofilia. En segundo lugar está la cuestión terminológica que afecta sobre todo a las palabras derivadas de la raíz gyps- (gipsofilo, gipsicola, gypsovago,…), así como a toda una serie de adjetivos complementarios (estricto, verdadero, preferente, extendido,…). En este caso la cuestión fundamental es si gipsofito y gipsofilo pueden emplearse indistintamente. La tercera cuestión está relacionada con los suelos yesíferos o quizás sea mejor decir con los horizontes gípsicos ya que el contenido en yeso de los mismos puede ser crítico a la hora de discriminar entre un gipsófito y una especie que no lo sea. El cuarto aspecto tiene que ver con la posibilidad de utilizar la composición química o estequiométrica para distinguir a los gipsófitos de las plantas que no lo son o, al menos, para separar la estrategia acumuladora de otras estrategias nutricionales. Y quedaría un quinto, poner sobre la mesa aunque sea de forma somera, aquellos territorios (en este caso países) de los que se tiene noticia que pueden tener una flora gipsófila. Tras examinar estas cuestiones a través de la revisión de 91 artículos obtenidos de una búsqueda en Scopus, es evidente que no se pueden considera sinónimos la gipso-tolerancia y la gisofilia. Además, los gipsófitos, al menos de momento, no pueden definirse de otra manera que no sea recurriendo al criterio clásico o inductivo, i.e., plantas que crecen exclusivamente en el yeso. Por lo que respecta al suelo, el nivel de yeso que soporta la vegetación gipsófila suele estar frecuentemente muy por encima del 50%. Por otra parte, aunque entre los gipsófitos es frecuente la estrategia acumuladora, en especial de Ca y S, no es un rasgo generalizable como tampoco lo es que esos minerales se concentren exclusivamente en las hojas. Las raíces, al menos en el caso del Ca, también pueden acumular grandes cantidades. Hasta ahora la investigación sobre la gipsofilia se ha concentrado en unos 10 países, lo que contrasta con los 75 en los que se han encontrado referencias o indicios que pueden albergar flora gipsófila, circunstancia que pone de manifiesto el interés de elaborar una checklist para favorecer el conocimiento de este tipo de flora.

Referencias bibliográficas

  • *Aguirre-Liguori, J.A., Scheinvar, E. & Eguiarte, L.E. 2014. Gypsum soil restriction drives genetic differentiation in Fouquieria shrevei (Fouquieriaceae). Am. J. Bot. 101 (4): 730-736.
  • Ahanger, M.A., Tyagi, S. R., Wani, M.R., & Ahmad, P. 2014. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Wani, M. R & Ahmad, P (Eds.). Physiological mechanisms and adaptation strategies in plants under changing environment. Pp. 25-55. Springer, New York.
  • *Akhani, H. 2004. A new spiny, cushion-like Euphorbia (Euphorbiaceae) from south-west Iran with special reference to the phytogeographic importance of local endemic species. Bot. J. Linn. Soc. 146(1): 107-121.
  • Akpulat, H.A. & Celik, N. 2005. Flora of gypsum areas in Sivas in the eastern part of Cappadocia in Central Anatolia, Turkey. J. Arid Environ. 61(1): 27-46.
  • *Alexander, P.J., Douglas, N.A., Ochoterena, H., Flores-Olvera, H. & Moore, M.J. 2014. Recent findings on the gypsum flora of the rim of the Guadalupe Mountains, New Mexico, U.S.A.: A new species of Nerisyrenia (Brassicaceae), a new state record, and an updated checklist. J. Bot. Res. Inst. Tex. 8 (2): 383-393.
  • *Alguacil, M.M., Roldan, A. & Torres, M.P. 2009a. Complexity of semiarid gypsophilous shrub communities mediates the AMF biodiversity at the plant species Level. Microb. Ecol. 57(4): 718-727.
  • *Alguacil, M.M., Roldán, A. & Torres, M.P. 2009b. Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environ. Microbiol. 11(10): 2649-2659.
  • *Alguacil, M.M., Torrecillas, E., Roldán, A., Díaz, G. & Torres, M.P. 2012. Perennial plant species from semiarid gypsum soils support higher AMF diversity in roots than the annual Bromus rubens (2012). Soil Biol. Biochem. 49: 132-138.
  • Ali, H., Khan, E. & Sajad, M.A. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7): 869-881.
  • Ardelean, M., Cachiţă-Cosma, D. & Crăciun, C. 2011. Vacuole formations identified in the cells of the foliar mesophyll of the young leaves of Sedum telephium ssp. maximum harvested from natural environment. Studia Univ. Vasile Goldis, Ser. Stii.Viet.: 21(3): 563-571.
  • Aronson, J. 1989. Salt-Tolerant Plants of the World. University of Arizona. Tucson.
  • Babaoglu, M., Gezgin, S., Topal, A., Sade, B. & Dural, H. 2004. Gypsophila sphaerocephala Fenzl ex Tchihat: A boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turk J. Agric For. 28: 273-278.
  • Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D. & Reeves, R.D. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recy. 11(1-4): 41-49.
  • Baker, A.J.M., Proctor, J. & Reeves, R.D. (Eds.). 1992. Vegetation of ultramafic (serpentine) soils: Proceedings of the first International Conference on Serpentine Ecology. Univ. California, Davis.
  • Baker, A.J.M. & Brooks, R.R. 1989. Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1: 81-126.
  • Barber, S.C. 1979. Floristic components of the gypsum hills and redbed plains area of southwestern Oklahoma. Southwest. Nat. 24(3): 431-437.
  • Beebo, A., Thomas, D., Der C., Sanchez, L., Leborgne-Castel, N., Marty, F., Schoefs, B. & Bouhidel, K. 2009. Life with and without AtTIP1;1, an Arabidopsis aquaporin preferentially localized in the a opposing tonoplasts of adjacent vacuoles. Plant Mol. Biol. 70: 193–209.
  • Benabadji, N., Aboura, R. & Benchouk, F.Z. 2009. La régression des steppes méditerranéennes: le cas d’un faciès à Lygeum spartum L. d’Oranie (Algérie). Ecol. Mediterr. 35: 75-91.
  • Bennett, T.H., Flowers T.J. & Bromham, L. 2013. Repeated evolution of salt-tolerance in grasses. Biol. Lett. 9: 20130029. http://dx.doi.org/10.1098/rsbl.2013.0029
  • Bogdanović, M., Sabovljević, M., Sabovljević, A. & Grubišić, D. 2009. The influence of gypsiferous substrata on bryophyte growth: are there obligatory gypsophilous bryophytes? Bot. Serb. 33(1): 75-82.
  • *Bolukbasi, A., Kurt, L. & Palacio, S. 2016. Unravelling the mechanisms for plant survival on gypsum soils: An analysis of the chemical composition of gypsum plants from Turkey. Plant Biol. 18 (2): 271-279.
  • Boukhris, M. & Lossaint, P. 1970. Sur la teneur en soufre de quelques plantes gypsophiles de Tunisie. Oecol. Plant. 5:345-354.
  • Boukhris, M. & Lossaint, P. 1972. Spécificité biogeochimique des plantes gypsophiles de Tunisie. Oecol. Plant. 7:45-68.
  • Boukhris, M. & Lossaint, P. 1975. Aspects écologiques de la nutrition minérale des plantes gypsicoles de Tunisie. Rev. Ecol. Biol. Sol. 12: 329-248.
  • Bridges, E.M. & Burnham, C.P. 1980. Soils of the state of Bahrain. J. Soil Sci. 31(4): 689-707.
  • Bromham, L. 2014. Macroevolutionary patterns of salt tolerance in angiosperms. Ann. Bot. (Oxford): 1-9. http://aob.oxfordjournals.org/content/115/3/333
  • Buckallew, R.R. 2015. Vascular Flora of the University of Central Oklahoma Selman Living Laboratory, Woodward, County, Oklahoma. Proc. Okla. Acad. Sci. 83: 31-45.
  • Caddell, G.M. & Rice, K.D. 2013. Vascular Flora of Alabaster Caverns State Park, Cimarron Gypsum Hills, Woodward County, Oklahoma. Okla. Nat. Plant Rec. 12(1):43-62.
  • *Cañadas, E.M., Ballesteros, M., Valle, F. & Lorite, J. 2014. Does gypsum influence seed germination? Turk. J. Bot. 38: 141-147.
  • *Castillejo, J.M., Castelló, R., Cristobal, A.G.S. & Abad, S. 2011. Soil-plant relationship along a semiarid gypsum gradient (Rio de Aguas, SE Spain). Plant Ecol. 212(8): 1287-1297.
  • *Cerrillo, M.I., Dana, E.D., Castro, H., Rodríguez-Tamayo, M.L. & Mota, J.F. 2002. Selección de áreas prioritarias para la conservación de flora gipsícola en el sureste de la Península Ibérica. Rev. Chil. Hist. Nat. 75(2): 395-408.
  • *Dehshiri, M.M. & Goodarzi, M. 2016. Taxonomic Notes on Hedysarum sect. Crinifera (Fabaceae) in Iran, with the Description of a New Species. Annal. Bot. Fenn. 53(1-2): 21-26.
  • *Dehshiri, M.M., & Jozipoor, M. 2014. Angiosperms, Kuhdasht gypsum areas, Lorestan, Iran. Check List 10(3): 516-523.
  • Denaeyer-De Smet, S. 1970. Note on the chemical composition of salts secreted by various gypsohalophytic species of Spain. Bull. Soc. Roc. Bot. Belg. 103: 273-278.
  • *Douglas, N.A. & Manos, P.S. 2007. Molecular phylogeny of Nyctaginaceae: Taxonomy, biogeography, and characters associated with a radiation of xerophytic genera in North America. Am. J. Bot. 94(5): 856-872.
  • Driessen, P., Deckers, J., Spaargaren, O. & Nachtergaele, F. 2001. Lecture notes on the major soils of the world (No. 94). FAO, Rome.
  • *Drohan, P.J. & Merkler, D.J. 2009. How do we find a true gypsophile?. Geoderma 150(1): 96-105.
  • Dushenkov, S., Kapulnik, Y., Blaylock, M., Sorochisky, B., Raskin, I. & Ensley, B. 1997.
  • Phytoremediation: a novel approach to an old problem. Stud. Environ. Sci. 66: 563-572.
  • Duvigneaud, P & Denaeyer-De Smet, S. 1966. Accumulation du soufre dans quelques espèces gypsophiles d’Espagne. Bull. Soc. Roc. Bot. Belg. 99: 263-269.
  • Duvigneaud, P. & Denaeyer–De Smet, S. 1968. Essai de classification chimique (elements mineraux) des plantes gypsicoles. Bull. Soc. Roy. Bot. Belg. 101: 279-291.
  • Duvigneaud, P. & Denaeyer–De Smet, S. 1973. Considerations sur l’ecologie de la nutrition minerale des tapis vegetaux naturels. Oecol. Plant. 8: 219-246.
  • Edbeib, M.F., Wahab, R.A., & Huyop, F. 2016. Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J. Microbiol. Biotechnol. 32(8): 1-23.
  • Emerson, F.W. 1935. An ecological reconnaissance in the White Sands, New Mexico. Ecology 16(2): 226-233.
  • Escavy, J.I., Herrero, M.J. & Arribas, M.E. 2012. Gypsum resources of Spain: Temporal and spatial distribution. Ore Geol. Rev. 49: 72-84.
  • *Escudero, A., Albert, M.J., Pita, J.M. & Pérez-García, F. 2000. Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol. 148(1): 71-80.
  • *Escudero, A., Carnes, L.F. & Pérez-García, F. 1997. Seed germination of gypsophytes and gypsovags in semi-arid central Spain. J. Arid Environ. 36(3):487-497.
  • *Escudero, A., Iriondo, J.M., Olano, J.M., Rubio, A. & Somolinos, R.C. 2000. Factors affecting establishment of a gypsophyte: The case of Lepidium subulatum (Brassicaceae). Am. J. Bot. 87(6): 861-871.
  • *Escudero, A., Palacio, S. Maestre, F.T. & Luzuriaga. A.L. 2015. Plant life on gypsum: A review of its multiple facets. Biol. Rev. Camb. Philos. Soc. 90: 1-18. DOI: 10.1111/brv.12092
  • *Escudero, A., Somolinos, R.C., Olano, J. & Rubio, A. 1999. Factors controlling the establishment of Helianthemum squamatum, an endemic gypsophile of semi-arid Spain. J. Ecol. 87(2): 290-302.
  • Esteve, F. & Varo, J. 1975. Estudio geobotánico de las comunidades halófilas interiores de la provincia de Granada. Anales Inst. Bot. Cavanilles 32(2): 1351-1374.
  • *Eugenio, M., Molina, C. & Montamarta, G. 2013. The conservation of high-interest plant species offers the chance to preserve unique and vulnerable representatives of gypsum steppes. In: Morales Prieto,
  • M.B. & Traba Díaz, J. (Eds.). Steppe Ecosystems: Biological Diversity, Management and Restoration, Pp. 197-209. Nova Sciencie Pub. Inc., Madrid.
  • *Ferriol, M., Pérez, I., Merle, H. & Boira, H. 2006. Ecological germination requirements of the aggregate species Teucrium pumilum (Labiatae) endemic to Spain. Plant Soil 284(1-2): 205-216.
  • Galardi, F., Corrales, I., Mengoni, A., Pucci, S., Barletti, L., Barzanti, R., M. Arnetoli, Gabbrielli,R. & Gonnelli, C. 2007. Intra-specific differences in nickel tolerance and accumulation in the Ni-hyperaccumulator Alyssum bertolonii. Environ. Exp. Bot. 60(3): 377-384.
  • Gallaher, R.N. 1975. The occurrence of calcium in plant tissue as crystals of calcium oxalate 1. Commun. Soil Sci. Plant Anal. 6(3): 315-330.
  • Golubic, S. 1980. Halophily and halotolerance in cyanophytes. In: Ponnameperuma, C. & Margulis, L. (Eds.). Limits of Life. Pp. 69-83. Reidel Publishing Company, Dordrecht, Boston and London.
  • Grigore, M.N., Toma, C., Zamfirache, M.M. & Boscaiu, M. 2011. Anatomical considerations on Spanish gypsophytes. Where is their place within plant ecology? Scientific Annals of Alexandru Ioan Cuza University of Iasi New Series, Section 2 Plant Biology 57: 31-38.
  • *Güemes, J., Marchal, F., Carrió, E. & Blasco, M.P. 2016. A new gypsophilous species of Chaenorhinum (Antirrhinaceae) from the south-east of the Iberian Peninsula. Plant Biosyst. 150 (1): 141-151.
  • *Hadjikyriakou, G. & Hand, R. 2011. Teucrium salaminium Hadjik. & Hand (Lamiaceae, Teucrium sect. Polium), a new species from Cyprus. Candollea, 66(2): 341-345.
  • Hameed, A. & Khan, M.A. 2011. Halophytes: biology and economic potentials. Karachi University J. Sci. 39(1): 40-44.
  • Hasanuzzaman, M., Nahar, K., Alam, Md. M., Bhowmik, P.C., Hossain, Md.A., Rahman, M.M., Prasad, M.N.V., Ozturk, M. & Fujita, M. 2014. Potential use of halophytes to remediate saline soils. BioMed. Res. Int. 2014, article ID 589341: 1-2. http://dx.doi.org/10.1155/2014/589341
  • Herrero, J., Artieda, O. & Hudnall, W.H. 2009. Gypsum, a tricky material. Soil Sci. Soc. Am. J. 73(6): 1757-1763.
  • Houba, V.J.G., Uittenbogaard, J. & Pellen, P.J. 1994. International plant-analytical exchange (IPE). Chemical Composition of Various Plant Species. Wageningen Agric. Univ., Wageningen.
  • Huguet del Villar, E. 1925. Avance geobotánica sobre la pretendida estepa central de España. IV Lithoseries. Iberica 580: 344-350.
  • IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015
  • International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. N. 106. FAO, Rome.
  • Johnston, I.M. 1941. Gypsophily among Mexican desert plants. J. Arnold Arbor. 22(2), 145-170.
  • Kartosentono, S., Nuraida, A., Indrayanto, G. & Zaini, N.C. 2001. Phytoremediation of Sr2+ and its influence on the growth, Ca2+ and solasodine content of shoot cultures of Solanum laciniatum. J. Biotech. Lett. 23(2): 153-155.
  • Kasprzyk, A. 2013. Distribution of strontium in the Badenian (Middle Miocene) gypsum deposits of the Nida area, Southern Poland. Geol. Q. 38(3): 497-512.
  • Kirishima, A., Sasaki, T. & Sato, N. 2015. Solution chemistry study of radioactive Sr on Fukushima Daiichi NPS site. J. Nucl. Sci. Technol. 52(2): 152-161.
  • Knight, H. 2000. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195: 269-324.
  • Linzon, S.N., Temple, P.J. & Pearson, R.G. 1979. Sulfur Concentrations in Plant Foliage and Related
  • Effects. J. Air Pollut. Control Assoc. 29(5): 520-525.
  • *Lowrey, T.K. & Knight, P.J. 1994. Townsendia gypsophila (Compositae: Astereae): a new species from northern New Mexico. Brittonia 46(3): 194-199.
  • Maldonado, A.C., Olvera, H.F. & Valdés, J. 2001. Las Euphorbiaceae halófilas y gipsófilas de México, excepto Euphorbia (parte a). An. Inst. Biol. Univ. Aut. México Bot. 72(1): 1-83.
  • Marchal F.M., Lendínez, M.L., Salazar, C. & Torres, J.A. 2008. Contributions to the knowledge of gypsic vegetation in western Granada province (S. Spain). Lazaroa 29: 95-100.
  • *Martinez-Duro, E., Ferrandis, P., Escudero, A., Luzuriaga, A.L. & Herranz, J.M. 2010. Secondary oldfield succession in an ecosystem with restrictive soils: Does time from abandonment matter? Appl. Veg. Sci. 13(2): 234-248.
  • Martínez-Hernández, F. 2013. Patrones biogeográficos de la flora gipsícola ibérica. PhD thesis. Univ. Almería, Almería.
  • Martínez-Hernández, F. Medina-Cazorla, J.M., Mendoza-Fernández, A., Pérez-García, F.J., Sánchez-Gómez, P., Garrido-Becerra, J.A., Gil de Carrasco, C. & Mota, J.F. 2009. Preliminary essay on the chorology of the Iberian gypsicolous flora: rarity and richness of the gypsum outcrops. Acta Bot. Gallica 156: 9-18.
  • *Martínez-Hernández, F., Mendoza-Fernández, A.J., Pérez-García, F.J., Martínez-Nieto, M.I., Garrido-Becerra, J.A., Salmerón-Sánchez, E., Merlo, M.E., Gil, C. & Mota, J.F. 2015. Areas of endemism as a conservation criterion for Iberian gypsophilous flora: a multi-scale test using the NDM/VNDM program. Plant Biosyst. 149(3): 483-493.
  • *Martínez-Hernández, F., Pérez-García, F.J., Garrido-Becerra, J.A., Mendoza-Fernández, A.J., Medina-Cazorla, J.M., Martínez-Nieto, M.I., Merlo Calvente, M.E. & Mota, J.F. 2011. The distribution of Iberian gypsophilous flora as a criterion for conservation policy. Biodiver. & Conserv. 20(6): 1353-1364. DOI 10.1007/s10531-011-0031-2.
  • *Matesanz, S., Escudero, A. & Valladares, F. 2009. Impact of three global change drivers on a Mediterranean shrub. Ecology 90(9): 2609-2621.
  • Megías, A.G., Sánchez-Piñero, F. & Hódar, J.A. 2011. Trophic interactions in an arid ecosystem: From decomposers to top-predators. J. Arid Environ. 75: 1333-1341.
  • Mendoza-Fernández, A.J., Spampinato, G., Musarella, C.M., Martínez-Hernández, F., Salmerón-Sánchez, E., Merlo, E. & Mota J.F. 2016. Leaf analyses of gypsophile flora from Sicily. In: Bacchetta, G. (Ed.). Conservation studies on Mediterranean threatened flora and vegetation. Book of Abstracts of the X International Meeting Biodiversity Conservation and Management, Sardinia 13-18 June. Pp. 52.Univ. Cagliari, Italy.
  • Mengoni, A., Schat, H. & Vangronsveld, J. 2010. Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331(1-2): 5-16.
  • Menzel, U. & Lieth, H. 2003. HALOPHYTE Database Vers. 2.0 update. In: Lieth, H. & Mochtchenko, M. (Eds.). Cash Crop Halophytes. Pp. 221-223 (and compact disc). Kluwer, Dordrecht.
  • Merlo, M.E., Mota, J.F., Alemán, M.M. & Cabello, J. 1998. La gipsofilia en plantas: un apasionante edafismo. Investigación y Gestión 3:103-112.
  • *Merlo, M.E., Gil de Carrasco, C., Sola Gómez, A.J., Jiménez Sánchez, M.L., Rodríguez Tamayo, M.L. & Mota, J.F. 2009. Can gypsophytes distinguish different types of gypsum habitats? Acta Bot. Gallica 156(1):63-78.
  • Merlo, M.E., Mota, J.F. & Sánchez Gómez, P. 2011. Ecofisiología y adaptaciones de las plantas vasculares a las características físicas y químicas de sustratos especiales. In: Mota, J.F., Sánchez-Gómez, P. & Guirado Romero, J.S. (Eds.). Diversidad vegetal de las yeseras ibéricas. Pp. 51-74. ADIF-Mediterráneo Asesores Consultores. Almería.
  • Merlo, M.E., Rodríguez-Tamayo, M.L., Jiménez, M.L., & Mota, J.F. 2001. Recapitulación sobre el comportamiento biogeoquímico de algunos gipsófitos y halófitos ibéricos. Monogr. Fl. Veg. Béticas 12: 77-95.
  • *Meyer, S.E. 1986. The ecology of gypsophile endemism in the eastern Mojave Desert. Ecology 67: 1303-1313.
  • *Meyer, S.E., García-Moya, E. & Lagunes-Espinoza, L.D.C. 1992. Topographic and soil surface effects on gypsophile plant community patterns in central Mexico. J. Veg. Sci. 3(3): 429-438.
  • Molano-Flores, B. 2001. Herbivory and calcium concentrations affect calcium oxalate crystal formation in
  • leaves of Sida (Malvaceae). Ann. Bot. (Oxford) 88: 387-391.
  • *Moore M.J., Mota J.F., Douglas N.A., Flores Olvera H. & Ochoterena, O. 2014. The ecology, assembly and evolution of gypsophile floras. In: Rajakaruna, N., Boyd, R.S. & Harris, T.B. (Eds.) Plant ecology and evolution in harsh environments. Pp. 97-128. Sci. Publ., Hauppauge, NY, USA.
  • *Moore, M.J. & Jansen, R.K. 2007. Origins and biogeography of gypsophily in the Chihuahuan Desert plant group Tiquilia subg. Eddya (Boraginaceae). System. Bot. 32(2): 392-414.
  • Mota, J.F., Garrido-Becerra, J.A., Merlo, M.E., Medina-Cazorla, J.M. & Sánchez-Gómez, P. 2017. The edaphism: gypsum, dolomite and serpentine flora and vegetation. In: Loidi, J. & Werger, M.J.A. (Eds.). The Vegetation of the Iberian Peninsula. Springer (in press).
  • *Mota, J.F., Garrido-Becerra, J.A., Pérez-García, F.J., Sola, A.J. & Valle, F. 2010. Use of the Multi-Response Permutation Procedure and Indicator Species Value for the statistical classification of the gypsicolous Iberian scrub communities. Candollea 65(1): 117-134.
  • Mota, J.F., Merlo, M.E., & Izco, J. 2011. Recorrido histórico por la investigación botánica sobre la flora y vegetación gipsófilas en España. In: Mota, J.F., Sánchez-Gómez, P. & Guirado Romero J.S. (Eds.). Diversidad vegetal de las yeseras ibéricas. Pp. 75-88. ADIF-Mediterráneo Asesores Consultores. Almería.
  • Mota, J.F., Sánchez-Gómez, P. & Guirado Romero, J.S. (Eds.). 2011. Diversidad vegetal de las yeseras ibéricas. ADIF-Mediterráneo Asesores Consultores. Almería.
  • Mota, J.F., Sánchez-Gómez, P., Merlo, M.E., Catalán, P., Laguna, E., de la Cruz, M., Navarro-Reyes, F.B., Marchal, F., Bartolomé, C., Martínez Labarga, J.M., Sainz Ollero, H., Valle, F., Serra, L., Martínez-Hernández, F., Garrido-Becerra, J.A. & Pérez-García, F.J. 2009. Aproximación a la checklist de los gipsófitos ibéricos. An. Biol. 31: 71-80.
  • *Mota, J.F., Sola A.J., Dana E.D. & Jiménez-Sánchez M.L. 2003. Plant succession in abandoned gypsum quarries in Southeast Spain. Phytocoenologia 33: 13–2.
  • *Mota, J.F., Sola-Gómez, A.J., Jiménez-Sánchez, M.L., Pérez-García, F.J. & Merlo, M.E. 2004. Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers. & Conserv. 13: 1797-1808.
  • Musarella, C.M., Spampinato, G., Mendoza-Fernández, A.J., Mota, J.F., Alessandrini, A., Brullo S., Caldarella, O., Ciaschetti, G., Conti, F., Di Martino, L., Falci, A., Gianguzzi, L., Guarino, R., Manzi, A., Minissale, P., Montanari, S., Pasta, S., Peruzzi, L., Sciandrello, S., Scuderi, L. & Troìa A. 2016.
  • Preliminary checklist of the Italian gypsophilous flora. In: Bacchetta, G. (Ed.). Conservation studies on Mediterranean threatened flora and vegetation. Book of Abstracts of the X International Meeting Biodiversity Conservation and Management, Sardinia 13-18 June. Pp. 53. Univ. Cagliari, Italy.
  • Nakata, P.A. 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 164(6): 901-909.
  • *Nesom, G.L.A. 2007. A New gypsophilous species of Erigeron (Asteraceae: Astereae) from Northeastern Mexico. J. Bot. Res. Inst. Tex. 1(2): 891-894.
  • *Northington, D.K. 1976. Evidence bearing on the origin of infraspecific disjunction in Sophora gypsophila (Fabaceae). Plant Sys. Evol. 125(4): 233-244.
  • *Oyonarte, C., Sanchez, G., Urrestarazu, M. & Alvarado, J.J. 2002. A comparison of chemical properties between gypsophile and nongypsophile plant rhizospheres. Arid Land Res. Manag. 16: 47-54.
  • Özdemir, C., Özkan, M. & Kandemir, A. 2010. The morphological and anatomical properties of Gypsophila lepidioides Boiss. (Caryophyllaceae) endemic to Turkey. Int. Res. J. Plant Sci. 1:69-74.
  • *Palacio, S., Escudero, A., Montserrat-Martí, G., Maestro, M., Milla, R. & Albert, M.J. 2007. Plants living on gypsum: Beyond the specialist model. Ann. Bot. (Oxford): 99: 333-343.
  • *Palacio, S., Aitkenhead, M., Escudero, A., Montserrat-Martí, G., Maestro, M. & Robertson, J. 2014a.
  • Gypsophile Chemistry Unveiled: Fourier Transform Infrared (FTIR) Spectroscopy Provides New Insight into Plant Adaptations to Gypsum Soils. PLoS ONE 9(9): e107285. doi:10.1371/journal.pone.0107285
  • *Palacio, S., Azorín, J., Montserrat-Martí, G. & Ferrio, J.P. 2014b. The crystallization water of gypsum
  • rocks is a relevant water source for plants. Nature Comm. 5: 4660. doi: 10.1038/ncomms5660
  • *Palacio, S., Johnson, D., Escudero, A. & Montserrat-Martí, G. 2012. Root colonisation by AM fungi differs
  • between gypsum specialist and non-specialist plants: Links to the gypsophile behavior. J. Arid Environ. 76(1): 128-132.
  • Parsons, R.F. 1976. Gypsophily in plants-a review. Am. Midl. Nat. 96: 1-20.
  • Pérez-García F.J., Martínez-Hernández, F., Mendoza, A.J., Merlo, M.E., Salmerón-Sánchez, E., Garrido-Becerra, J.A. & Mota J.F. 2016. Towards a global checklist of the gypsophytes of the World. In: Bacchetta, G. (Ed.). Conservation studies on Mediterranean threatened flora and vegetation. Book of Abstracts of the X International Meeting Biodiversity Conservation and Management, Sardinia 13-18 June. Pp. 41. University of Cagliari, Italy.
  • Pérez-García, F.J., Martínez-Hernández. F., Garrido-Becerra, J.A., Mendoza-Fernández, A.J., Medina-Cazorla, J.M., Martínez-Nieto, M.I. & Mota, J.F. 2011. Biogeografía de la conservación en los aljezares ibéricos: Patrones corológicos y selección de reservas. In: Mota J.F., Sánchez-Gómez, P. & Guirado Romero J.S. (Eds.). Diversidad vegetal de las yeseras ibéricas. Pp. 569-586. ADIF-Mediterráneo Asesores Consultores. Almería.
  • Poch, R.M., De Coster, W. & Stoops, G. 1998. Pore space characteristics as indicator of soil behaviour in gypsiferous soils. Geoderma 87: 87-109.
  • Popper, K.R. 1959. The logic of scientific discovery. Hutchinson, London.
  • *Porras-Alfaro, A., Raghavan, S., Garcia, M., Sinsabaugh, R.L., Natvig, D.O. & Lowrey, T.K. 2014. Endophytic fungal symbionts associated with gypsophilous plants. Botany 92(4): 295-301.
  • *Pueyo, Y., Alados, C.L., Barrantes, O., Komac, B. & Rietkerk, M. 2008. Differences in gypsum plant communities associated with habitat fragmentation and livestock grazing. Ecol. Appl. 18(4): 954-964.
  • *Pueyo, Y., Alados, C.L., Maestro, M. & Komac, B. 2007. Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol. 189(2): 301-311.
  • *Queiroz, T.F.D., Baughman, C., Baughman, O., Gara, M. & Williams, N. 2012. Species distribution modeling for conservation of rare, edaphic endemic plants in White River Valley, Nevada. Nat. Area. J. 32(2): 149-158.
  • Reid, N. & Hill, S.M. 2010. Biogeochemical sampling for mineral exploration in arid terrains: Tanami Gold Province, Australia. J. Geochem. Explora 104(3): 105-117.
  • Reid, N. & Hill, S.M. 2013. Spinifex biogeochemistry across arid Australia: Mineral exploration potential and chromium accumulation. Appl. Geochem. 29: 92-101.
  • Reid, N., Hill, S.M. & Lewis, D.M. 2008. Spinifex biogeochemical expressions of buried gold mineralisation: the great mineral exploration penetrator of transported regolith. Appl. Geochem. 23(1):76-84.
  • Reyes Prósper, E. 1915. Las estepas de España y su vegetación. Esc. Tip. “Sucesores de Rivadeneyra”. Madrid.
  • Rick, A.C. 2012. Survey and analysis of plant communities growing on gypsum in the Western Australian Wheatbelt. Report for the Wheatbelt NRM region and the department of environment and conservation. Newdegate, WA, Australia.
  • *Rincón, A., Arenal, F., González, I., Manrique, E., Lucas, M.M. & Pueyo, J.J. 2008 Diversity of rhizobial bacteria isolated from nodules of the gypsophyte Ononis tridentata L. growing in Spanish soils. Microb. Ecol. 56(2): 223-233.
  • Roberts, B.A. & Proctor, J. (Eds.). 1992 (ed. 2013). The ecology of areas with serpentinized rocks: a world view. Springer Sci. & Business Media.
  • *Robins, C.R., Buck, B.J. & Williams, A.J. 2014. Establishing soil and surficial geologic habitat criteria for presumed gypsophiles. The example of Eriogonum corymbosum var. nilesii, Mojave Desert, U.S.A. Catena 118: 9-19.
  • *Romão, R.L. & Escudero, A. 2005. Gypsum physical soil crusts and the existence of gypsophytes in semiarid central Spain. Plant Ecol. 181(1): 127-137.
  • Rosell, L., Orti, F., Kasprzyk, A., Playa, E. & Peryt, T.M. 1998. Strontium geochemistry of Miocene primary gypsum: Messinian of southeastern Spain and Sicily and Badenian of Poland. J. Sediment. Res. 68(1): 63-79.
  • *Salazar, G.A., Chávez-Rendón, C., De Ávila B., & Jiménez-Machorro, R. 2016. Floral similarity and vegetative divergence in a new species of Bletia (Orchidaceae) from Mexico. Phytotaxa 275(2): 112-126.
  • *Salmerón-Sánchez, E., Martínez-Nieto, M.I., Martínez-Hernández, F., Garrido-Becerra, J.A., Mendoza-Fernández, A.J., Gil de Carrasco, C., Ramos-Miras, J.J., Lozano, R., Merlo M.E. & Mota, J.F. 2014a.
  • Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata (Lag.) DC. (Compositae) on two special edaphic substrates: Dolomite and gypsum. Plant Soil: 374 (1-2): 233-250.
  • Sánchez del Pino, I., Flores Olvera, H. & Valdés, J. 1999. La familia Amaranthaceae en la flora halófila y gipsófila de México. An. Inst. Biol. Univ. Aut. México Bot. 70(1): 29-135.
  • Santos, J., Al-Azzawi, M., Aronson, J. & Flowers, T.J. 2016. e-HALOPH a database of salt-tolerant plants: helping put halophytes to work. Plant Cell Physiol. 57(1): e10 (1–10)
  • Saslis-Lagoudakis, C.H., Moray, C. & Bromham, L. 2014. Evolution of salt tolerance in angiosperms: a phylogenetic approach. In: Rajakaruna, N., Boyd, R.S. & Harris, T.B. (Eds.) Plant Ecology and evolution in harsh environments. Pp. 77-95. Nova Science Publishers, Hauppauge, NY, USA.
  • Sheoran, V., Sheoran, A. & Poonia, P. 2011. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit. Rev. Environ. Sci. Technol. 41: 168-214.
  • Silva-Graça, M., Neves, L. & Lucas, C. 2003. Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis (halophila) CBS4019 as the archetype?. FEMS Yeast Res. 3(4): 347-362.
  • Singh, S., Eapen, S., Thorat, V., Kaushik, C.P., Raj, K. & D’Souza, S.F. 2008. Phytoremediation of 137 cesium and 90 strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicol. Environ. Saf. 69(2): 306-311.
  • *Soriano, P., Moruno, F., Boscaiu, M., Vicente, O., Hurtado, A., Llinares, J.V. & Estrelles, E. 2014. Is salinity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila? Plant Soil 384 (1-2): 363-379.
  • Spaargaren, O. 2008. Gypsisols. In: Chesworth, W. (Ed.). Encyclopedia of Soil Science. Pp. 301-302. Springer, New York.
  • Szota, C., Farrell, C., Livesley, S.J., & Fletcher, T.D. 2015. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater. Water Res. 83:195-204.
  • Torrecillas, E., Alguacil, M.M., Roldán, A., Díaz, G., Montesinos-Navarro, A., Torres, M.P. 2014.
  • Modularity reveals the tendency of arbuscular mycorrhizal fungi to interact differently with generalist and specialist plant species in gypsum soils. Appl. Environ. Microbiol. 80(17): 5457-5466.
  • Tuyukina, T.Y. 2009. Geochemical studies of northern taiga (gypsum) karst ecosystems and their high vulnerability to natural and anthropogenic hazards. Environ. Geol. 58(2): 269-274.
  • Van Alphen, J.G. & Rios Romero, F. 1971. Gypsiferous soils, notes on their characteristics and management. International Institute for Land Reclamation and Improvement. Wageningen.
  • Van Der Gaag, P. 2008. Mining water from gypsum. Int. J. Global Environ. Issues 8(3): 274-281.
  • Verheye, W.H. & Boyadgiev, T.G. 1997. Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use Manage. 13(2): 97-103.
  • Waisel, Y. 1972. Biology of Halophytes. Academic Press. New York and London.
  • Watanabe, T., Broadley, M.R., Jansen, S., White, P.J., Takada, J., Satake, K., Takamatsu, T., Tuah, S.J. & Osaki, M. 2007. Evolutionary control of leaf element composition in plants. New Phytol. 174(3): 516-523.
  • Waterfall, U.T. 1946. Observations on the desert gypsum flora of southwestern Texas and adjacent New Mexico. Am. Midl. Nat. 36(2): 456-466.
  • Weinert, E. & Sakri F.A. 1977. Sulfate content in plant tissues of some Iraqi desert plants. Flora. 166: 65-73.
  • Yang, S., Zhong, Y., Luo, H., Ding, X. & Zuo C.1999. Studies on chemical constituents of the roots of Gypsophila oldhamiana Miq. Zhongguo Zhong Yao Za Zhi. 24(11): 680-1, 703.
  • *Yildirim, H. & Crespo, M.B. 2014. Acantholimon riyatguelii (Plumbaginaceae), a threatened new unarmed species from Central Anatolia, Turkey. Phytotaxa 175(2): 73-84.