Un modelo de aprendizaje e inferencia a partir de información imperfecta

  1. Garrido Carrera, María del Carmen
Zuzendaria:
  1. José Manuel Cadenas Figueredo Zuzendaria
  2. Alberto Ruiz García Zuzendaria

Defentsa unibertsitatea: Universidad de Murcia

Fecha de defensa: 1999(e)ko urria-(a)k 08

Epaimahaia:
  1. Fernando Martín Rubio Presidentea
  2. Luis Daniel Hernández Molinero Idazkaria
  3. José Luis Verdegay Galdeano Kidea
  4. Pablo Bustos García de Castro Kidea
  5. Félix Monasterio-Huelin Maciá Kidea
Saila:
  1. Ingeniería de la Información y las Comunicaciones

Mota: Tesia

Teseo: 76540 DIALNET

Laburpena

En este trabajo se analiza la información imperfecta en el contexto de los mecanismos automáticos de inferencia y aprendizaje inductivos, Se presenta el modelo MFGN( Mixtures of Factorized Generalized Normals) como un método eficiente para realizar inferencia y aprendizaje desde información imperfecta. El modelo obtiene una expresión explicita de la función de densidad conjunta modelo-observación, donde tanto la densidad conjunta como la información de entrada pueden ser interpretadas como funciones de masas que se combinan. La estructura matemática de mezcla de normales generalizadas factorizadas, permite una computación eficiente de las densidades a posteriori, así como que la interpretación del modelo como función de masas dé lugar a evidencias definidas sobre dominios de una sola variable, lo cual facilita el trabajo con la regla de evidencias de Dempster-Shafer. El modelo permite,tanto en su fase de inferencia como de aprendizaje, utilizar información expresada de una gran variedad de formas a través de modelos de incertidumbre objetiva, subjetiva e imprecisión. Los resultados experimentales indican que el modelo MFGN es capaz de reconstruir el modelo de dependencias de los atributos y realizar inferencia a partir de observaciones con un grado moderadamente alto de incertidumbre e imprecisión. El hecho de situar el modelo en el marco de una teoría más general, como es la Teoría de Evidencias de Demspter-Shafer, permitirá usar distintas interpretaciones de la información imperfecta según la forma que parezca más adecuada.