Heart rate reserve at ventilatory thresholds, maximal lactate steady state and maximal aerobic power in well-trained cycliststraining application

  1. Morán-Navarro, Ricardo 1
  2. Mora-Rodríguez, Ricardo 2
  3. Rodríguez-Rielves, Víctor 1
  4. De la Fuente-Pérez, Paulo 1
  5. G. Pallarés, Jesús 1
  1. 1 Human Performance and Sports Science Laboratory, University of Murcia, Spain.
  2. 2 Universidad de Castilla-La Mancha
    info

    Universidad de Castilla-La Mancha

    Ciudad Real, España

    ROR https://ror.org/05r78ng12

Revista:
European Journal of Human Movement

ISSN: 0214-0071 2386-4095

Año de publicación: 2016

Número: 36

Páginas: 150-162

Tipo: Artículo

Otras publicaciones en: European Journal of Human Movement

Resumen

Introducción: Un gran número test se han desarrollado para tratar de predecir el rendimiento en ciclismo. Sin embargo, los altos costes y la formación necesaria para poder realizar estas pruebas aleja habitualmente este tipo de valoraciones de entrenadores y atletas. El objetivo de este estudio es proporcionar una equivalencia entre estas valoraciones fisiológicas y la frecuencia cardiaca de reserva (HRR) para facilitar el proceso de entrenamiento en ciclistas. Materiales y Métodos: Treinta y tres ciclistas varones bien entrenados aeróbicamente ( O2max 62.1±4.6 ml·kg-1·min-1) realizaron dos test incrementales máximos en rampa (GXT; 50 W calentamiento, seguido de 25 W·min-1). O2 y CO2 fueron registrados durante el GXT, además varios test fueron llevados a cabo para detectar el máximo estado estable de lactato (MLSS). Resultados: VT1, VT2 y O2max fueron alcanzados a 184±36, 298±36 and 390±34 vatios respectivamente, equivalentes al 66±9%, 88±6% y 100% de la HRR. MLSS (n=14), fue localizado a 256±31vatios. Se definieron cinco zonas de entrenamiento; 53-62% HRR (zona R0), 62-71% HRR (zona R1), 74-86% HRR (zona R2), 86-99% HRR (zona R3) and 100% HRR (zona R3+). Discusión: Se encontró relación entre la HRR y los umbrales aeróbico y anaeróbico (VT1 y VT2), MLSS y O2max. La HRR sirvió para definir 5 zonas de entrenamiento correspondientes a los eventos fisiológicos y que pueden ser utilizadas para optimizar el entrenamiento.

Referencias bibliográficas

  • Amann, M., Subudhi, A.W., & Foster, C. (2006). Predictive validity of ventilatory and lactate thresholds for cycling time trial performance. Scandinavian Journal of Medicine & Science in Sports, 16, 27–34.
  • American College of Sports Medicine (2013). ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
  • Arts, F.J. Kuipers, H. (1994). The relation between power output, oxygen uptake and heart rate in male athletes. International Journal of Sports Medicine, 15, 228–231.
  • Aunola, S., Rusko, H. (1984). Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. European Journal of Applied Physiology and Occupational Physiology, 53(3), 260-266.
  • Beaver, W.L., Wasserman, K., & Whipp, B.J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology, 60, 2020–2027.
  • Beneke, R. (1995). Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Medicine and science in sports and exercise, 27(6), 863.
  • Beneke, R., von Duvillard, S.P. (1996). Determination of maximal lactate steady state response in selected sports events. Medicine Science & Sports Exercise, 28, 241–246.
  • Borg, G. (1998). Borg's perceived exertion and pain scales. Human kinetics.
  • Bulbulian, R., Wilcox, A.R., Darabos, B.L. (1986). Anaerobic contribution to distance running performance of trained cross-country runners. Medicine & Science in Sports & Exercise, 18, 107-113.
  • Burgomaster, K.A., Howarth, K.R., Phillips, S.M., Rakobowchuk, M., Macdonald, M.J., McGee, S.L. & Gibala, M.J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology, 586, 151–160.
  • Burgomaster, K.A., Hughes, S.C., Heigenhauser, G.J., Bradwell, S.N. & Gibala, M.J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98, 1985–1990.
  • Lounana, J., Campion, F., Noakes, T. D., & Medelli, J. (2007). Relationship between% HRmax,% HR reserve,% VO2max, and% VO2 reserve in elite cyclists. Medicine & Science in Sports & Exercise, 39(2), 350-357.
  • Cavanagh, P.R., Kram, R. (1985). The efficiency of human movement - a statement of the problem. Medicine & Science in Sports & Exercise, 17, 304-308.
  • Copp, S. W., Hirai, D. M., Musch, T. I., & Poole, D.C. (2010). Critical speed in the rat: implications for hindlimb muscle blood flow distribution and fibre recruitment. The Journal of Physiology, 588(24), 5077-5087.
  • Del Coso, J., Hamouti, N., Aguado-Jimenez, R., Mora-Rodriguez, R. (2009). Respiratory compensation and blood pH regulation during variable intensity exercise in trained versus untrained subjects. European Journal of Applied Physiology, 107, 83–93.
  • Docherty, D., Sporer, B. (2000). A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Medicine, 30(6): 385-94
  • Esteve-Lanao, J., Foster, C., Seiler, S., & Lucia, A. (2007). Impact of training intensity distribution on performance in endurance athletes. The Journal of Strength and Conditining Research, 21(3), 943-949.
  • Farrell, P.A., Wilmore, J.H., Coyle, E.F., Billing, J.E., & Costill, D.L. (1979). Plasma lactate accumulation and distance running performance. Medicine & Science in Sports & Exercise, 11(4), 338-44.
  • Foster, C. (1983). VO2max and training indices as determinants of competitive running performance. Journal of Sports Sciences, 1, 13–22.
  • García-Pallarés, J., & Izquierdo, M. (2011). Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Medicine, 41(4), 329-343.
  • García-Pallarés, J., Sánchez-Medina, L., Carrasco, L., Díaz, A., & Izquierdo, M. (2009). Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. European Journal of Applied Physiology, 106(4), 629-638.
  • García-Pallarés, J., Sánchez-Medina, L., Pérez, C.E., Izquierdo-Gabarren, M., & Izquierdo, M. (2010). Physiological effects of tapering and detraining in world-class kayakers. Medicine & Science in Sports & Exercise, 42(6), 1209.
  • Gaskill, S.E., Ruby, B.C., Walker, A.J., Sanchez, O.A., Serfass, R.C., Leon, A.S. (2001). Validity and reliability of combining three methods to determine ventilatory threshold. Medicine & Science in Sports & Exercise, 33(11), 1841-1848.
  • Gibala, M.J., Little, J.P., MacDonald, M.J., & Hawley, J.A. (2012). Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of Physiology, 590(5), 1077-1084.
  • Gibala, M.J., Little, J.P., van Essen, M., Wilkin, G.P., Burgomaster, K.A., Safdar, A., Raha, S. & Tarnopolsky, M.A. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. Journal of Physiology, 575, 901–911.
  • Helgerud, J., Hoydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., & Hoff, J. (2007). Aerobic High-Intensity Intervals Improve VO2max More Than Moderate Training. Medicine and Science in Sports and Exercise, 39(4), 665.
  • Jones, A.M., Wilkerson, D.P., DiMenna, F., Fulford, J., & Poole, D.C. (2008). Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. American Journal of Physiology-Regulatory: Integrative and Comparative Physiology, 294(2), 585-593.
  • Lucía, A., Hoyos, J., Pérez, M., Chicharro, J.L. (2000). Heart rate and performance parameters in elite cyclists: a longitudinal study. Medicine and Science in Sports and Exercise, 32, 1777–1782.
  • Lucía, A., Sánchez, O., Carvajal, A., Chicharro, J.L. (1999). Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. British Journal of Sports Medicine, 33, 178–185.
  • Lucia, A., Hoyos, J., Carvajal, A., & Chicharro, J.L. (1999). Heart rate response to professional road cycling: the Tour de France. International Journal of Sports Medicine, 20(3), 167-172.
  • MacDougall, D., Sale, D. (1981). Continuous vs interval training: a review for the athlete and the coach. Canadian Journal of Applied Sport Sciences, 6(2): 93-7
  • Mora-Rodríguez, R., Pallarés, J.G., López-Gullón, J.M., López-Samanes, Á., Fernández-Elías, V.E., Ortega, J.F. (2015). Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. Journal of Science and Medicine in Sport, 18(3), 338-342.
  • Mujika, I., Padilla, S. (2001). Physiological and performance characteristics of male professional road cyclists. Sports Medicine, 31(7), 479-487.
  • Noakes, T. (1988). Implications of exercise testing por prediction of athletics performance: a contemporary perspective. Medicine & Science in Sports & Exercise, 20, 319-330.
  • Paavolainen, L., Nummela, A., Rusko, H. (2000). Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scandinavian Journal of Medicine & Science in Sports, 10, 286-291.
  • Paavolainen, L., Häkkinen, K., Hämäläinen, I., Nummela, A., Rusko, H. (1999) Explosive-strength training improves 5-Km running time by improving running economy and muscle power. Journal of Applied Physiology, 86, 1527-1533.
  • Pallarés et al., 2016. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclist. PLoS One. In press.
  • Pfitzinger, P., Freedson, P.S. (1998). The reliability of lactate measurements during exercise. International Journal of Sports Medicine, 19, 349–357.
  • Prud'Homme, D., Bouchard, C., Leblance, C., Landry, F., Lortie, G., Boulay, M.R. (1984). Reliability of assessments of ventilatory thresholds. Journal of Sports Sciences, 2(1), 13-24.
  • Rakobowchuk, M., Tanguay, S., Burgomaster, K.A., Howarth, K.R., Gibala, M.J. & MacDonald, M.J. (2008). Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. American Journal of Physiology Regulatory, Integrative and Comparative
  • Physiology, 295, 236–242.
  • Seiler, S., Tønnessen, E. (2009). Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience, 13, 32-53.
  • Skinner, J.S., McLellan, T.H. (1980). The transition from aerobic to anaerobic metabolism. Research Quarterly for Exercise and Sport, 51, 234–248.
  • Wasserman, K., Whipp, B.J., Koyl, S.N., Beaver, W.L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology, 35, 236–243.
  • Weltman, A., Snead, D., Stein, P., Seip, R., Schurrer, R., Rutt, R., & Weltman, J. (1990). Reliability and validity of a continuous incremental treadmill protocol for the determination of lactate threshold, fixed blood lactate concentrations, and VO2max. International Journal of Sports Medicine, 11(1), 26-32.
  • Weston, S.B., Gabbett, T.J. (2001). Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. Journal of Science and Medicine in Sport, 4, 357–366.