2-D Duffing OscillatorElliptic Functions from a Dynamical Systems Point of View

  1. Francisco Javier Molero 1
  2. Martín Lara 1
  3. Sebastián Ferrer 1
  4. Francisco Céspedes 1
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Año de publicación: 2013

Volumen: 12

Número: 1

Páginas: 115-139

Tipo: Artículo

DOI: 10.1007/S12346-013-0098-0 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Qualitative theory of dynamical systems

Resumen

K. Meyer has advocated for the study of elliptic functions and integrals from a dynamical systems point of view. Here, we follow his advice and we propose the bidimensional Hamiltonian Duffing oscillator as a model; it allows us to deal with the elliptic integral of third kind directly. Focusing on bounded trajectories we do a detailed analysis of the solutions in the three regions defined by the parameters. In our opinion, for the study of elliptic functions, the model presented here represents an alternative to the pendulum or the free rigid body systems.