Assessment of Boar Sperm Quality: New Diagnostic Techniques

  1. Romero-Aguirregomezcorta, Jon 1
  2. Abril Parreño, Laura 1
  3. Quintero Moreno, Armando 1
  4. Gadea Mateos, Joaquín
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Book:
Assisted Reproductive Technologies in Animals Volume 1

ISBN: 9783031730788 9783031730795

Year of publication: 2024

Pages: 265-305

Type: Book chapter

DOI: 10.1007/978-3-031-73079-5_9 GOOGLE SCHOLAR lock_openOpen access editor

Bibliographic References

  • Ablondi M, Godia M, Rodriguez-Gil JE, Sanchez A, Clop A (2021) Characterisation of sperm piRNAs and their correlation with semen quality traits in swine. Anim Genet 52(1):114–120. https://doi.org/10.1111/age.13022
  • Alm K, Peltoniemi OA, Koskinen E, Andersson M (2006) Porcine field fertility with two different insemination doses and the effect of sperm morphology. Reprod Domest Anim 41(3):210–213. https://doi.org/10.1111/j.1439-0531.2005.00670.x
  • Althouse GC, Hopkins SM (1995) Assessment of boar sperm viability using a combination of two fluorophores. Theriogenology 43(3):595–603. https://doi.org/10.1016/0093-691x(94)00065-3
  • Alvarez-Rodriguez M, Vicente-Carrillo A, Rodriguez-Martinez H (2018) Hyaluronan improves neither the long-term storage nor the cryosurvival of liquid-stored CD44-bearing AI boar spermatozoa. J Reprod Dev 64(4):351–360. https://doi.org/10.1262/jrd.2017-141
  • Alvarez-Rodriguez M, Martinez C, Wright D, Barranco I, Roca J, Rodriguez-Martinez H (2020) The transcriptome of pig spermatozoa, and its role in fertility. Int J Mol Sci 21(5):1572. https://doi.org/10.3390/ijms21051572
  • Amann RP, Katz DF (2004) Reflections on CASA after 25 years. J Androl 25(3):317–325. https://doi.org/10.1002/j.1939-4640.2004.tb02793.x
  • Amann RP, Waberski D (2014) Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81(1):5–17e11–13. https://doi.org/10.1016/j.theriogenology.2013.09.004
  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. https://doi.org/10.1038/nature02871
  • Antonczyk A, Nizanski W, Partyka A, Ochota M, Mila H (2012) The usefulness of real time morphology software in semen assessment of teratozoospermic boars. Syst Biol Reprod Med 58(6):362–368. https://doi.org/10.3109/19396368.2012.715229
  • Babamoradi H, Amigo JM, van den Berg F, Petersen MR, Satake N, Boe-Hansen G (2015) Quality assessment of boar semen by multivariate analysis of flow cytometric data. Chemom Intell Lab Syst 142:219–230. https://doi.org/10.1016/j.chemolab.2015.02.008
  • Balogun KB, Stewart KR (2021) Effects of air exposure and agitation on quality of stored boar semen samples. Reprod Domest Anim 56(9):1200–1208. https://doi.org/10.1111/rda.13975
  • Banaszewska D, Andraszek K (2021) Assessment of the morphometry of heads of normal sperm and sperm with the dag defect in the semen of duroc boars. J Vet Res 65(2):239–244
  • Barquero V, Roldan ERS, Soler C, Yaniz JL, Camacho M, Valverde A (2021) Predictive capacity of boar sperm morphometry and morphometric sub-populations on reproductive success after artificial insemination. Animals (Basel) 11(4)
  • Blom E (1983) [Pathological conditions in genital organs and sperm as a cause for the rejection of breeding bulls for import into and export from Denmark (an andrologic retrospective, 1958-1982)]. Nord Vet Med 35(3):105–130
  • Boe-Hansen GB, Satake N (2019) An update on boar semen assessments by flow cytometry and CASA. Theriogenology 137:93–103. https://doi.org/10.1016/j.theriogenology.2019.05.043
  • Bompart D, Garcia-Molina A, Valverde A, Caldeira C, Yaniz J, Nunez de Murga M, Soler C (2018) CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reprod Fertil Dev 30(6):810–819. https://doi.org/10.1071/RD17551
  • Bonet S (1990) Immature and aberrant spermatozoa in the ejaculate of Sus domesticus. Anim Reprod Sci 22(1):67–80. https://doi.org/10.1016/0378-4320(90)90039-i
  • Bonet S, Briz M (1991) New data on aberrant spermatozoa in the ejaculate of Sus domesticus. Theriogenology 35(4):725–730. https://doi.org/10.1016/0093-691x(91)90413-8
  • Bonet S, Briz M, Fradera A (1993) Ultrastructural abnormalities of boar spermatozoa. Theriogenology 40(2):383–396. https://doi.org/10.1016/0093-691x(93)90276-b
  • Briz M, Fàbrega A (2013) The Boar spermatozoon. In: Bonet C, Holt Y (eds) Boar reproduction: fundamentals and new biotechnological trends. Springer, Berlin, pp 3–47. https://doi.org/10.1007/978-3-642-35049-8_1
  • Briz MD, Bonet S, Pinart B, Camps R (1996) Sperm malformations throughout the boar epididymal duct. Anim Reprod Sci 43(4):221–239
  • Broekhuijse ML, Sostaric E, Feitsma H, Gadella BM (2011) Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 76(8):1473–1486. e1471. https://doi.org/10.1016/j.theriogenology.2011.05.040
  • Broekhuijse ML, Feitsma H, Gadella BM (2012a) Artificial insemination in pigs: predicting male fertility. Vet Q 32(3–4):151–157. https://doi.org/10.1080/01652176.2012.735126
  • Broekhuijse ML, Sostaric E, Feitsma H, Gadella BM (2012b) Application of computer-assisted semen analysis to explain variations in pig fertility. J Anim Sci 90(3):779–789. https://doi.org/10.2527/jas.2011-4311
  • Broekhuijse ML, Sostaric E, Feitsma H, Gadella BM (2012c) Relationship of flow cytometric sperm integrity assessments with boar fertility performance under optimized field conditions. J Anim Sci 90(12):4327–4336. https://doi.org/10.2527/jas.2012-5040
  • Broekhuijse ML, Sostaric E, Feitsma H, Gadella BM (2012d) The value of microscopic semen motility assessment at collection for a commercial artificial insemination center, a retrospective study on factors explaining variation in pig fertility. Theriogenology 77(7):1466–1479. e1463. https://doi.org/10.1016/j.theriogenology.2011.11.016
  • Brouwers JF, Silva PF, Gadella BM (2005) New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze-thawing. Theriogenology 63(2):458–469. https://doi.org/10.1016/j.theriogenology.2004.09.046
  • Brym P, Wasilewska-Sakowska K, Mogielnicka-Brzozowska M, Mankowska A, Paukszto L, Pareek CS, Kordan W, Kondracki S, Fraser L (2021) Gene promoter polymorphisms in boar spermatozoa differing in freezability. Theriogenology 166:112–123. https://doi.org/10.1016/j.theriogenology.2021.02.018
  • Bustamante-Filho IC, Pasini M, Moura AA (2022) Spermatozoa and seminal plasma proteomics: Too many molecules, too few markers. The case of bovine and porcine semen. Anim Reprod Sci 247:107075. https://doi.org/10.1016/j.anireprosci.2022.107075
  • Caamano JN, Tamargo C, Parrilla I, Martinez-Pastor F, Padilla L, Salman A, Fueyo C, Fernandez A, Merino MJ, Iglesias T, Hidalgo CO (2021) Post-thaw sperm quality and functionality in the autochthonous pig breed Gochu Asturcelta. Animals (Basel) 11(7). https://doi.org/10.3390/ani11071885
  • Caballero I, Vazquez JM, Mayor GM, Alminana C, Calvete JJ, Sanz L, Roca J, Martinez EA (2009) PSP-I/PSP-II spermadhesin exert a decapacitation effect on highly extended boar spermatozoa. Int J Androl 32(5):505–513
  • Caballero I, Parrilla I, Alminana C, del Olmo D, Roca J, Martinez EA, Vazquez JM (2012) Seminal plasma proteins as modulators of the sperm function and their application in sperm biotechnologies. Reprod Domest Anim 47 Suppl 3(s3):12–21. https://doi.org/10.1111/j.1439-0531.2012.02028.x
  • Camus A, Camugli S, Leveque C, Schmitt E, Staub C (2011) Is photometry an accurate and reliable method to assess boar semen concentration? Theriogenology 75(3):577–583. https://doi.org/10.1016/j.theriogenology.2010.09.025
  • Castellini C, Dal Bosco A, Ruggeri S, Collodel G (2011) What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertil Steril 96(1):24–27. https://doi.org/10.1016/j.fertnstert.2011.04.096
  • Centurion F, Vazquez JM, Calvete JJ, Roca J, Sanz L, Parrilla I, Garcia EM, Martinez EA (2003) Influence of porcine spermadhesins on the susceptibility of boar spermatozoa to high dilution. Biol Reprod 69(2):640–646. https://doi.org/10.1095/biolreprod.103.016527
  • Chang Y, Dai DH, Li Y, Zhang Y, Zhang M, Zhou GB, Zeng CJ (2016) Differences in the expression of microRNAs and their predicted gene targets between cauda epididymal and ejaculated boar sperm. Theriogenology 86(9):2162–2171
  • Chen C, Hou J, Tanner JJ, Cheng J (2020) Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci 21(8):2873. https://doi.org/10.3390/ijms21082873
  • Christensen P, Stryhn H, Hansen C (2005) Discrepancies in the determination of sperm concentration using Burker-Turk, Thoma and Makler counting chambers. Theriogenology 63(4):992–1003. https://doi.org/10.1016/j.theriogenology.2004.05.026
  • Curry E, Safranski TJ, Pratt SL (2011) Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology 76(8):1532–1539. https://doi.org/10.1016/j.theriogenology.2011.06.025
  • Czubaszek M, Andraszek K, Banaszewska D, Walczak-Jedrzejowska R (2019) The effect of the staining technique on morphological and morphometric parameters of boar sperm. PLoS One 14(3):e0214243. https://doi.org/10.1371/journal.pone.0214243
  • Dai DH, Qazi IH, Ran MX, Liang K, Zhang Y, Zhang M, Zhou GB, Angel C, Zeng CJ (2019) Exploration of miRNA and mRNA Profiles in Fresh and Frozen-Thawed Boar Sperm by Transcriptome and Small RNA Sequencing. Int J Mol Sci 20(4):802
  • De Lazari FL, Sontag ER, Schneider A, Araripe Moura AA, Vasconcelos FR, Nagano CS, Dalberto PF, Bizarro CV, Mattos RC, Mascarenhas Jobim MI, Bustamante-Filho IC (2020) Proteomic identification of boar seminal plasma proteins related to sperm resistance to cooling at 17 degrees C. Theriogenology 147:135–145. https://doi.org/10.1016/j.theriogenology.2019.11.023
  • Del Gallego R, Sadeghi S, Blasco E, Soler C, Yaniz JL, Silvestre MA (2017) Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Anim Reprod Sci 177:97–104. https://doi.org/10.1016/j.anireprosci.2016.12.010
  • Di Caprio G, Gioffrè MA, Saffioti NA, Grilli SA, Ferraro PA, Puglisi RA, Balduzzi DA, Galli AA, Coppola GA (2010) Quantitative label-free animal sperm imaging by means of digital holographic microscopy. IEEE J Selected Top Quantum Electron 16(4):833–840. https://doi.org/10.1109/jstqe.2009.2036741
  • Didion BA (2008) Computer-assisted semen analysis and its utility for profiling boar semen samples. Theriogenology 70(8):1374–1376. https://doi.org/10.1016/j.theriogenology.2008.07.014
  • Dott HM, Foster GC (1979) The estimation of sperm motility in semen, on a membrane slide, by measuring the area change frequency with an image analysing computer. J Reprod Fertil 55(1):161–166. https://doi.org/10.1530/jrf.0.0550161
  • Druart X, Rickard JP, Mactier S, Kohnke PL, Kershaw-Young CM, Bathgate R, Gibb Z, Crossett B, Tsikis G, Labas V, Harichaux G, Grupen CG, de Graaf SP (2013) Proteomic characterization and cross species comparison of mammalian seminal plasma. J Proteome 91:13–22. https://doi.org/10.1016/j.jprot.2013.05.029
  • Ehlers J, Behr M, Bollwein H, Beyerbach M, Waberski D (2011) Standardization of computer-assisted semen analysis using an e-learning application. Theriogenology 76(3):448–454. https://doi.org/10.1016/j.theriogenology.2011.02.021
  • Ellis DJ, Shadan S, James PS, Henderson RM, Edwardson JM, Hutchings A, Jones R (2002) Post-testicular development of a novel membrane substructure within the equatorial segment of ram, bull, boar, and goat spermatozoa as viewed by atomic force microscopy. J Struct Biol 138(3):187–198. https://doi.org/10.1016/s1047-8477(02)00025-4
  • Fagerlind M, Stalhammar H, Olsson B, Klinga-Levan K (2015) Expression of miRNAs in bull spermatozoa correlates with fertility rates. Reprod Domest Anim 50(4):587–594. https://doi.org/10.1111/rda.12531
  • Fair S, Romero-Aguirregomezcorta J (2019) Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology 137:15–22. https://doi.org/10.1016/j.theriogenology.2019.05.032
  • Feitsma H (2009) Artificial insemination in pigs, research and developments in The Netherlands, a review. Acta Sci Vet 37(Supl 1):s61–s71
  • Feugang JM, Liao SF, Willard ST, Ryan PL (2018) In-depth proteomic analysis of boar spermatozoa through shotgun and gel-based methods. BMC Genomics 19(1):62. https://doi.org/10.1186/s12864-018-4442-2
  • Flesch FM, Voorhout WF, Colenbrander B, van Golde LM, Gadella BM (1998) Use of lectins to characterize plasma membrane preparations from boar spermatozoa: a novel technique for monitoring membrane purity and quantity. Biol Reprod 59(6):1530–1539. https://doi.org/10.1095/biolreprod59.6.1530
  • Flesch FM, Colenbrander B, van Golde LM, Gadella BM (1999) Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem Biophys Res Commun 262(3):787–792. https://doi.org/10.1006/bbrc.1999.1300
  • Fraser L, Lecewicz M, Strzezek J (2002) Fluorometric assessments of viability and mitochondrial status of boar spermatozoa following liquid storage. Pol J Vet Sci 5(2):85–92
  • Gaczarzewicz D (2015) Influence of chamber type integrated with computer-assisted semen analysis (CASA) system on the results of boar semen evaluation. Pol J Vet Sci 18(4):817–824. https://doi.org/10.1515/pjvs-2015-0106
  • Gadea J (2003) Review: Semen extenders used in the artificial insemination of swine. Span J Agric Res 1(2):17–27
  • Gadea J (2005) Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology 63(2):431–444. https://doi.org/10.1016/j.theriogenology.2004.09.023
  • Gadea J (2019) Desarrollo de un estándar de calidad para centros de inseminación porcina en España. La propuesta ANPSTAND Suis 154:16–20
  • Gadea J, Matas C (2000) Sperm factors related to in vitro penetration of porcine oocytes. Theriogenology 54(9):1343
  • Gadea J, Selles E, Marco MA (2004) The predictive value of porcine seminal parameters on fertility outcome under commercial conditions. Reprod Domest Anim 39(5):303–308. https://doi.org/10.1111/j.1439-0531.2004.00513.x
  • Gadea J, Gumbao D, Matas C, Romar R (2005) Supplementation of the thawing media with reduced glutathione improves function and the in vitro fertilizing ability of boar spermatozoa after cryopreservation. J Androl 26(6):749–756. https://doi.org/10.2164/jandrol.05057
  • Garcia-Herreros M, Aparicio IM, Baron FJ, Garcia-Marin LJ, Gil MC (2006) Standardization of sample preparation, staining and sampling methods for automated sperm head morphometry analysis of boar spermatozoa. Int J Androl 29(5):553–563. https://doi.org/10.1111/j.1365-2605.2006.00696.x
  • Garner DL, Johnson LA (1995) Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod 53(2):276–284. https://doi.org/10.1095/biolreprod53.2.276
  • Garner DL, Pinkel D, Johnson LA, Pace MM (1986) Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses. Biol Reprod 34(1):127–138. https://doi.org/10.1095/biolreprod34.1.127
  • Garner DL, Dobrinsky JR, Welch GR, Johnson LA (1996) Porcine sperm viability, oocyte fertilization and embryo development after staining spermatozoa with SYBR-14. Theriogenology 45(6):1103–1113
  • Godia M, Swanson G, Krawetz SA (2018) A history of why fathers’ RNA matters. Biol Reprod 99(1):147–159. https://doi.org/10.1093/biolre/ioy007
  • Godia M, Estill M, Castello A, Balasch S, Rodriguez-Gil JE, Krawetz SA, Sanchez A, Clop A (2019) A RNA-Seq analysis to describe the boar sperm transcriptome and its seasonal changes. Front Genet 10:299. https://doi.org/10.3389/fgene.2019.00299
  • Godia M, Castello A, Rocco M, Cabrera B, Rodriguez-Gil JE, Balasch S, Lewis C, Sanchez A, Clop A (2020) Identification of circular RNAs in porcine sperm and evaluation of their relation to sperm motility. Sci Rep 10(1):7985. https://doi.org/10.1038/s41598-020-64711-z
  • Gonzalez-Cadavid V, Martins JA, Moreno FB, Andrade TS, Santos AC, Monteiro-Moreira AC, Moreira RA, Moura AA (2014) Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology 82(5):697–707. https://doi.org/10.1016/j.theriogenology.2014.05.024
  • Górski K, Kondracki S, Wysokińska A (2017) Effects of season on semen parameters and relationships between selected semen characteristics in Hypor boars. Turk J Vet Anim Sci 41:563–569
  • Gonzalez-Castro RA, Peña FJ, Herickhoff LA (2022) Validation of a new multiparametric protocol to assess viability, acrosome integrity and mitochondrial activity in cooled and frozen thawed boar spermatozoa. Cytom B Clin Cytom 102(5):400–408. https://doi.org/10.1002/cyto.b.22058
  • Graham JK, Kunze E, Hammerstedt RH (1990) Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry. Biol Reprod 43(1):55–64. https://doi.org/10.1095/biolreprod43.1.55
  • Grossfeld R, Pable J, Jakop U, Simmet C, Schulze M (2022) Comparison of NUCLEOCOUNTER, ANDROVISION with Leja chambers and the newly developed ANDROVISION eFlow for sperm concentration analysis in boars. Sci Rep 12(1):11943. https://doi.org/10.1038/s41598-022-16280-6
  • Gu A, Ji G, Shi X, Long Y, Xia Y, Song L, Wang S, Wang X (2010) Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum Reprod 25(12):2955–2961. https://doi.org/10.1093/humrep/deq274
  • Gu NH, Zhao WL, Wang GS, Sun F (2019) Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod Biol Endocrinol 17(1):66. https://doi.org/10.1186/s12958-019-0510-y
  • Guo H, Gong Y, He B, Zhao R (2017) Relationships between mitochondrial DNA content, mitochondrial activity, and boar sperm motility. Theriogenology 87:276–283. https://doi.org/10.1016/j.theriogenology.2016.09.005
  • Guthrie HD, Welch GR (2006) Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J Anim Sci 84(8):2089–2100. https://doi.org/10.2527/jas.2005-766
  • Hancock JL (1957) The morphology of boar spermatozoa. J R Microsc Soc 76(3):84–97. https://doi.org/10.1111/j.1365-2818.1956.tb00443.x
  • Hansen C, Christensen P, Stryhn H, Hedeboe AM, Rode M, Boe-Hansen G (2002) Validation of the FACSCount AF system for determination of sperm concentration in boar semen. Reprod Domest Anim 37(6):330–334. https://doi.org/10.1046/j.1439-0531.2002.00367.x
  • Hansen C, Vermeiden T, Vermeiden JP, Simmet C, Day BC, Feitsma H (2006) Comparison of FACSCount AF system, Improved Neubauer hemocytometer, Corning 254 photometer, SpermVision, UltiMate and NucleoCounter SP-100 for determination of sperm concentration of boar semen. Theriogenology 66(9):2188–2194. https://doi.org/10.1016/j.theriogenology.2006.05.020
  • Harrison RA, Mairet B, Miller NG (1993) Flow cytometric studies of bicarbonate-mediated Ca2+ influx in boar sperm populations. Mol Reprod Dev 35(2):197–208. https://doi.org/10.1002/mrd.1080350214
  • Harrison RA, Ashworth PJ, Miller NG (1996) Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Mol Reprod Dev 45(3):378–391. https://doi.org/10.1002/(SICI)1098-2795(199611)45:3<378::AID-MRD16>3.0.CO;2-V
  • Hirai M, Boersma A, Hoeflich A, Wolf E, Foll J, Aumuller TR, Braun J (2001) Objectively measured sperm motility and sperm head morphometry in boars (Sus scrofa): relation to fertility and seminal plasma growth factors. J Androl 22(1):104–110
  • Holt WV (1982) Epididymal origin of a coiled-tail sperm defect in a boar. J Reprod Fertil 64(2):485–489. https://doi.org/10.1530/jrf.0.0640485
  • Holt C (1995) An investigation of boar sperm motility using a novel computerized analysis system. PhD, University of London, University College London, London, UK
  • Holt W, Watson P, Curry M, Holt C (1994) Reproducibility of computer-aided semen analysis: comparison of five different systems used in a practical workshop. Fertil Steril 62(6):1277–1282. https://doi.org/10.1016/s0015-0282(16)57201-x
  • Holt C, Holt WV, Moore HD (1996) Choice of operating conditions to minimize sperm subpopulation sampling bias in the assessment of boar semen by computer-assisted semen analysis. J Androl 17(5):587–596
  • Holt C, Holt WV, Moore HD, Reed HC, Curnock RM (1997) Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: results of two fertility trials. J Androl 18(3):312–323
  • Iglesias I (2016) Tomographic imaging of transparent biological samples using the pyramid phase microscope. Biomed Opt Express 7(8):3049–3055. https://doi.org/10.1364/BOE.7.003049
  • Iglesias I, Vargas-Martin F (2013) Quantitative phase microscopy of transparent samples using a liquid crystal display. J Biomed Opt 18(2):26015. https://doi.org/10.1117/1.JBO.18.2.026015
  • Jakel H, Henning H, Luther AM, Rohn K, Waberski D (2021) Assessment of chilling injury in hypothermic stored boar spermatozoa by multicolor flow cytometry. Cytom A 99(10):1033–1041. https://doi.org/10.1002/cyto.a.24301
  • Jimenez CR, Piersma S, Pham TV (2007) High-throughput and targeted in-depth mass spectrometry-based approaches for biofluid profiling and biomarker discovery. Biomark Med 1(4):541–565. https://doi.org/10.2217/17520363.1.4.541
  • Jodar M, Sendler E, Moskovtsev SI, Librach CL, Goodrich R, Swanson S, Hauser R, Diamond MP, Krawetz SA (2015) Absence of sperm RNA elements correlates with idiopathic male infertility. Sci Transl Med 7(295):295re296. https://doi.org/10.1126/scitranslmed.aab1287
  • Johnson LA, Weitze KF, Fiser P, Maxwell WMC (2000) Storage of boar semen. Anim Reprod Sci 62(1):143–172
  • Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G, Krawetz SA (2011) The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 141(1):21–36. https://doi.org/10.1530/REP-10-0322
  • Jones RC (1971) Studies of the structure of the head of boar spermatozoa from the epididymis. J Reprod Fertil Suppl 13(Suppl 13):51–64
  • Jones R, James PS, Oxley D, Coadwell J, Suzuki-Toyota F, Howes EA (2008) The equatorial subsegment in mammalian spermatozoa is enriched in tyrosine phosphorylated proteins. Biol Reprod 79(3):421–431. https://doi.org/10.1095/biolreprod.107.067314
  • Jung M, Rudiger K, Schulze M (2015) In vitro measures for assessing boar semen fertility. Reprod Domest Anim 50(Suppl 2):20–24. https://doi.org/10.1111/rda.12533
  • Juonala T, Lintukangas S, Nurttila T, Andersson M (2007) Relationship between semen quality and fertility in 106 AI-boars. Reprod Domest Anim 33(3–4):155–158. https://doi.org/10.1111/j.1439-0531.1998.tb01334.x
  • Kaewmala K, Uddin MJ, Cinar MU, Grosse-Brinkhaus C, Jonas E, Tesfaye D, Phatsara C, Tholen E, Looft C, Schellander K (2011) Association study and expression analysis of CD9 as candidate gene for boar sperm quality and fertility traits. Anim Reprod Sci 125(1–4):170–179. https://doi.org/10.1016/j.anireprosci.2011.02.017
  • Kaewmala K, Uddin MJ, Cinar MU, Grosse-Brinkhaus C, Jonas E, Tesfaye D, Phatsara C, Tholen E, Looft C, Schellander K (2012) Investigation into association and expression of PLCz and COX-2 as candidate genes for boar sperm quality and fertility. Reprod Domest Anim 47(2):213–223. https://doi.org/10.1111/j.1439-0531.2011.01831.x
  • Kaplan M, Russell LD, Peterson RN, Martan J (1984) Boar sperm cytoplasmic droplets: their ultrastructure, their numbers in the epididymis and at ejaculation and their removal during isolation of sperm plasma membranes. Tissue Cell 16(3):455–468. https://doi.org/10.1016/0040-8166(84)90063-6
  • Keller A, Kerns K (2022) Deep learning, artificial intelligence methods to predict boar sperm acrosome health. Anim Reprod Sci 247:107110. https://doi.org/10.1016/j.anireprosci.2022.107110
  • Kim SW, Ki MS, Kim CL, Hwang IS, Jeon IS (2017) A simple confocal microscopy-based method for assessing sperm movement. Dev Reprod 21(3):229–235. https://doi.org/10.12717/DR.2017.21.3.229
  • Knecht D, Jankowska-Makosa A, Duzinski K (2017) Analysis of the lifetime and culling reasons for AI boars. J Anim Sci Biotechnol 8(1):49. https://doi.org/10.1186/s40104-017-0179-z
  • Kondracki S, Bonaszewska D, Mielnicka C (2005) The effect of age on the morphometric sperm traits of domestic pigs (Sus scrofa domestica). Cell Mol Biol Lett 10(1):3–13
  • Kondracki S, Banaszewska D, Wysokinska A, Chomicz J (2006a) Sperm morphology of cattle and domestic pigs. Reprod Biol 6(Suppl 2):99–104
  • Kondracki S, Wysokinska A, Banaszewska D, Wozniak E (2006b) Evaluation of males spermiogram in domestic pigs. Reprod Biol 6(Suppl 2):93–98
  • Kondracki S, Wysokinska A, Kania M, Gorski K (2017) Application of two staining methods for sperm morphometric evaluation in domestic pigs. J Vet Res 61(3):345–349. https://doi.org/10.1515/jvetres-2017-0045
  • Kovac JR, Pastuszak AW, Lamb DJ (2013) The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 99(4):998–1007. https://doi.org/10.1016/j.fertnstert.2013.01.111
  • Kumar D, Yadav AK, Dash D (2017) Choosing an optimal database for protein identification from tandem mass spectrometry data. In: Keerthikumar S, Mathivanan S (eds) Proteome bioinformatics. Springer, New York, pp 17–29. https://doi.org/10.1007/978-1-4939-6740-7_3
  • Kuster C (2005) Sperm concentration determination between hemacytometric and CASA systems: why they can be different. Theriogenology 64(3):614–617. https://doi.org/10.1016/j.theriogenology.2005.05.047
  • Kwon WS, Oh SA, Kim YJ, Rahman MS, Park YJ, Pang MG (2015a) Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci Rep 5:13821. https://doi.org/10.1038/srep13821
  • Kwon WS, Rahman MS, Lee JS, Yoon SJ, Park YJ, Pang MG (2015b) Discovery of predictive biomarkers for litter size in boar spermatozoa. Mol Cell Proteomics MCP 14(5):1230–1240. https://doi.org/10.1074/mcp.M114.045369
  • Lasley JF, Bogart R (1944) A comparative study of epididymal and ejaculated spermatozoa of the boar. J Anim Sci 3(4):360–370. https://doi.org/10.2527/jas1944.34360x
  • Li Y, Li RH, Ran MX, Zhang Y, Liang K, Ren YN, He WC, Zhang M, Zhou GB, Qazi IH, Zeng CJ (2018) High throughput small RNA and transcriptome sequencing reveal capacitation-related microRNAs and mRNA in boar sperm. BMC Genomics 19(1):736. https://doi.org/10.1186/s12864-018-5132-9
  • Li J, Zhao W, Zhu J, Ju H, Liang M, Wang S, Chen S, Ferreira-Dias G, Liu Z (2023) Antioxidants and oxidants in boar spermatozoa and their surrounding environment are associated with AMPK activation during liquid storage. Vet Sci 10(3)
  • Lin CL, Ponsuksili S, Tholen E, Jennen DG, Schellander K, Wimmers K (2006) Candidate gene markers for sperm quality and fertility of boar. Anim Reprod Sci 92(3–4):349–363. https://doi.org/10.1016/j.anireprosci.2005.05.023
  • Llavanera M, Delgado-Bermudez A, Ribas-Maynou J, Salas-Huetos A, Yeste M (2022) A systematic review identifying fertility biomarkers in semen: a clinical approach through Omics to diagnose male infertility. Fertil Steril 118(2):291–313. https://doi.org/10.1016/j.fertnstert.2022.04.028
  • Lopez Rodriguez A, Rijsselaere T, Vyt P, Van Soom A, Maes D (2012) Effect of dilution temperature on boar semen quality. Reprod Domest Anim 47(5):e63–e66. https://doi.org/10.1111/j.1439-0531.2011.01938.x
  • Lopez Rodriguez A, Van Soom A, Arsenakis I, Maes D (2017) Boar management and semen handling factors affect the quality of boar extended semen. Porcine Health Manag 3:15. https://doi.org/10.1186/s40813-017-0062-5
  • Ma C, Li J, Tao H, Lei B, Li Y, Tong K, Zhang X, Guan K, Shi Y, Li F (2013) Discovery of two potential DAZL gene markers for sperm quality in boars by population association studies. Anim Reprod Sci 143(1–4):97–101. https://doi.org/10.1016/j.anireprosci.2013.10.002
  • Maes D, Rijsselaere T, Vyt P, Sokolowska A, Deley W, Van Soom A (2010) Comparison of five different methods to assess the concentration of boar semen. Vlaams Diergeneeskundig Tijdschrift 79(1):42–47
  • Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B (2016) The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol 46(1):34–43. https://doi.org/10.1002/eji.201545774
  • Mańkowska A, Brym P, Paukszto Ł, Jastrzębski JP, Fraser L (2020) Gene polymorphisms in boar spermatozoa and their associations with post-thaw semen quality. Int J Mol Sci 21(5):1902
  • Markley JL, Bruschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40. https://doi.org/10.1016/j.copbio.2016.08.001
  • Martinez-Pastor F, Tizado EJ, Garde JJ, Anel L, de Paz P (2011) Statistical series: opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 75(5):783–795. https://doi.org/10.1016/j.theriogenology.2010.11.034
  • Martin-Hidalgo D, Baron FJ, Bragado MJ, Carmona P, Robina A, Garcia-Marin LJ, Gil MC (2011) The effect of melatonin on the quality of extended boar semen after long-term storage at 17 degrees C. Theriogenology 75(8):1550–1560. https://doi.org/10.1016/j.theriogenology.2010.12.021
  • Martin-Hidalgo D, Solar-Malaga S, Gonzalez-Fernandez L, Zamorano J, Garcia-Marin LJ, Bragado MJ (2024) The compound YK 3-237 promotes pig sperm capacitation-related events. Vet Res Commun 48(2):773–786. https://doi.org/10.1007/s11259-023-10243-6
  • Maside C, Recuero S, Salas-Huetos A, Ribas-Maynou J, Yeste M (2023) Animal board invited review: An update on the methods for semen quality evaluation in swine—from farm to the lab. Animal 17(3):100720. https://doi.org/10.1016/j.animal.2023.100720
  • Matas C, Decuadro G, Martinez-Miro S, Gadea J (2007) Evaluation of a cushioned method for centrifugation and processing for freezing boar semen. Theriogenology 67(5):1087–1091. https://doi.org/10.1016/j.theriogenology.2006.11.010
  • Mateo-Otero Y, Fernandez-Lopez P, Gil-Caballero S, Fernandez-Fuertes B, Bonet S, Barranco I, Yeste M (2020) (1)H nuclear magnetic resonance of pig seminal plasma reveals intra-ejaculate variation in metabolites. Biomolecules 10(6):906. https://doi.org/10.3390/biom10060906
  • Mateo-Otero Y, Fernandez-Lopez P, Delgado-Bermudez A, Nolis P, Roca J, Miro J, Barranco I, Yeste M (2021) Metabolomic fingerprinting of pig seminal plasma identifies in vivo fertility biomarkers. J Anim Sci Biotechnol 12(1):113. https://doi.org/10.1186/s40104-021-00636-5
  • Menezes TA, Bustamante-Filho IC, Paschoal AFL, Dalberto PF, Bizarro CV, Bernardi ML, Ulguim RDR, Bortolozzo FP, Mellagi APG (2020) Differential seminal plasma proteome signatures of boars with high and low resistance to hypothermic semen preservation at 5 degrees C. Andrology 8(6):1907–1922. https://doi.org/10.1111/andr.12869
  • Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457(7228):413–420. https://doi.org/10.1038/nature07756
  • Morales B, Quintero-Moreno A, Osorio-Meléndez C, Rubio-Guillén J (2012) Valoración de la biometría de la cabeza del espermatozoide mediante análisis computarizado en semen de cerdo recién colectado y refrigerado. Rev Fac Agron 29:413–431
  • Murgas LDS, Lima D, Alvarenga ALN, Zangeronimo MG, Oberlender G, Oliveira SL (2010) Estudo comparativo de diferentes técnicas de avaliação da concentração espermática em suínos. Archivos de Zootecnia 59:463–466
  • Murphy EM, Stanton C, Brien CO, Murphy C, Holden S, Murphy RP, Varley P, Boland MP, Fair S (2017) The effect of dietary supplementation of algae rich in docosahexaenoic acid on boar fertility. Theriogenology 90:78–87. https://doi.org/10.1016/j.theriogenology.2016.11.008
  • Nishigaki T, Jose O, Gonzalez-Cota AL, Romero F, Trevino CL, Darszon A (2014) Intracellular pH in sperm physiology. Biochem Biophys Res Commun 450(3):1149–1158. https://doi.org/10.1016/j.bbrc.2014.05.100
  • Oberlender G, Murgas L, Zangeronimo M, Silva A, Pereira L, Muzzi R (2012) Comparison of two different methods for evaluating boar semen morphology. Arch Med Vet 44:201–205
  • Ortega-Ferrusola C, Gil MC, Rodriguez-Martinez H, Anel L, Peña FJ, Martin-Munoz P (2017) Flow cytometry in spermatology: a bright future ahead. Reprod Domest Anim 52(6):921–931. https://doi.org/10.1111/rda.13043
  • Park M, Yoon H, Kang BH, Lee H, An J, Lee T, Cheong HT, Lee SH (2023) Deep learning-based precision analysis for acrosome reaction by modification of plasma membrane in boar sperm. Animals (Basel) 13(16):2622. https://doi.org/10.3390/ani13162622
  • Paulenz H, Grevle IS, Tverdal A, Hofmo PO, Berg KA (2007) Precision of the Coulter® counter for routine assessment of boar-sperm concentration in comparison with the haemocytometer and spectrophotometer. Reprod Domest Anim 30(3):107–111. https://doi.org/10.1111/j.1439-0531.1995.tb00614.x
  • Peña FJ, Johannisson A, Wallgren M, Rodríguez-Martínez H (2003) Assessment of fresh and frozen-thawed boar semen using an Annexin-V assay: a new method of evaluating sperm membrane integrity. Theriogenology 60(4):677–689
  • Peña FJ, Saravia F, Garcia-Herreros M, Nunez-martinez I, Tapia JA, Johannisson A, Wallgren M, Rodriguez-Martinez H (2005) Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to postthaw quality. J Androl 26(6):716–723. https://doi.org/10.2164/jandrol.05030
  • Peña FJ, Ball BA, Squires EL (2018) A new method for evaluating stallion sperm viability and mitochondrial membrane potential in fixed semen samples. Cytom B Clin Cytom 94(2):302–311. https://doi.org/10.1002/cyto.b.21506
  • Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A (2012) JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis 3(11):e430. https://doi.org/10.1038/cddis.2012.171
  • Perez-Patino C, Barranco I, Parrilla I, Valero ML, Martinez EA, Rodriguez-Martinez H, Roca J (2016) Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J Proteome 142:15–23. https://doi.org/10.1016/j.jprot.2016.04.026
  • Perez-Patino C, Parrilla I, Li J, Barranco I, Martinez EA, Rodriguez-Martinez H, Roca J (2019) The proteome of pig spermatozoa is remodeled during ejaculation. Mol Cell Proteomics MCP 18(1):41–50. https://doi.org/10.1074/mcp.RA118.000840
  • Petrunkina AM, Volker G, Brandt H, Topfer-Petersen E, Waberski D (2005) Functional significance of responsiveness to capacitating conditions in boar spermatozoa. Theriogenology 64(8):1766–1782. https://doi.org/10.1016/j.theriogenology.2005.04.007
  • Pineiro C, Morales J, Rodriguez M, Aparicio M, Manzanilla EG, Koketsu Y (2019) Big (pig) data and the internet of the swine things: a new paradigm in the industry. Anim Front 9(2):6–15. https://doi.org/10.1093/af/vfz002
  • Pursel VG, Johnson LA (1974) Glutaraldehyde fixation of boar spermatozoa for acrosome evaluation. Theriogenology 1(2):63–68. https://doi.org/10.1016/0093-691x(74)90008-9
  • Quintero-Moreno A (2003) Estudio sobre la dinámica de poblaciones espermáticas en semen de caballo, cerdo y conejo. Doctoral thesis, Universitat Autònoma de Barcelona, Barcelona, Spain
  • Quintero-Moreno A, Rigau T, Rodríguez-Gil J (2004) Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61(4):673–690
  • Quintero-Moreno A, González-Villalobos D, López-Brea JJ, Esteso MC, Fernández-Santos MR, Carvalho-Crociata JL, Mejía-Silva W, León-Atencio G (2009) Valoración morfométrica de la cabeza del espermatozoide del cerdo doméstico según su edad. Revista Científica 19:153–158
  • Quintero-Moreno A, Ramirez M, Nava-Trujillo H, Hidalgo M (2015) Comparison of two histologic stains in the evaluation of sperm head morphometric measurements in frozen-thawed bull semen. Acta Microsc 24:103
  • Quirino M, Jakop U, Mellagi APG, Bortolozzo FP, Jung M, Schulze M (2022) A 5-color flow cytometry panel to assess plasma membrane integrity, acrosomal status, membrane lipid organization and mitochondrial activity of boar and stallion spermatozoa following liquid semen storage. Anim Reprod Sci 247:107076. https://doi.org/10.1016/j.anireprosci.2022.107076
  • Reyer H, Abou-Soliman I, Schulze M, Henne H, Reinsch N, Schoen J, Wimmers K (2024) Genome-wide association analysis of semen characteristics in Piétrain boars. Genes 15(3):382
  • Riesenbeck A, Schulze M, Rudiger K, Henning H, Waberski D (2015) Quality control of boar sperm processing: implications from European AI centres and two spermatology reference laboratories. Reprod Domest Anim 50(Suppl 2):1–4. https://doi.org/10.1111/rda.12573
  • Robles V, Martínez-Pastor F (2013) Flow cytometric methods for sperm assessment. In: Carrell A (ed) Spermatogenesis: methods and protocols. Humana, Totowa, NJ, pp 175–186. https://doi.org/10.1007/978-1-62703-038-0_16
  • Rodriguez-Martinez H, Kvist U, Saravia F, Wallgren M, Johannisson A, Sanz L, Peña FJ, Martinez EA, Roca J, Vazquez JM, Calvete JJ (2009) The physiological roles of the boar ejaculate. Soc Reprod Fertil Suppl 66:1–21
  • Rodriguez-Martinez H, Kvist U, Ernerudh J, Sanz L, Calvete JJ (2011) Seminal plasma proteins: what role do they play? Am J Reprod Immunol 66(Suppl 1):11–22. https://doi.org/10.1111/j.1600-0897.2011.01033.x
  • Romero-Aguirregomezcorta J, Soriano-Ubeda C, Matas C (2021) Involvement of nitric oxide during in vitro oocyte maturation, sperm capacitation and in vitro fertilization in pig. Res Vet Sci 134:150–158. https://doi.org/10.1016/j.rvsc.2020.12.011
  • Rubessa M, Feugang JM, Kandel ME, Schreiber S, Hessee J, Salerno F, Meyers S, Chu I, Popescu G, Wheeler MB (2020) High-throughput sperm assay using label-free microscopy: morphometric comparison between different sperm structures of boar and stallion spermatozoa. Anim Reprod Sci 219:106509. https://doi.org/10.1016/j.anireprosci.2020.106509
  • Saravia F, Nunez-Martinez I, Moran JM, Soler C, Muriel A, Rodriguez-Martinez H, Pena FJ (2007) Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology 68(2):196–203. https://doi.org/10.1016/j.theriogenology.2007.04.052
  • Schulze M, Ruediger K, Mueller K, Jung M, Well C, Reissmann M (2013) Development of an in vitro index to characterize fertilizing capacity of boar ejaculates. Anim Reprod Sci 140(1–2):70–76. https://doi.org/10.1016/j.anireprosci.2013.05.012
  • Schulze M, Buder S, Rudiger K, Beyerbach M, Waberski D (2014) Influences on semen traits used for selection of young AI boars. Anim Reprod Sci 148(3–4):164–170. https://doi.org/10.1016/j.anireprosci.2014.06.008
  • Schulze M, Ammon C, Schaefer J, Luther AM, Jung M, Waberski D (2017) Impact of different dilution techniques on boar sperm quality and sperm distribution of the extended ejaculate. Anim Reprod Sci 182:138–145. https://doi.org/10.1016/j.anireprosci.2017.05.013
  • Schulze M, Bortfeldt R, Schafer J, Jung M, Fuchs-Kittowski F (2018) Effect of vibration emissions during shipping of artificial insemination doses on boar semen quality. Anim Reprod Sci 192:328–334. https://doi.org/10.1016/j.anireprosci.2018.03.035
  • Serrano R, Garrido N, Cespedes JA, Gonzalez-Fernandez L, Garcia-Marin LJ, Bragado MJ (2020) Molecular mechanisms involved in the impairment of boar sperm motility by peroxynitrite-induced nitrosative stress. Int J Mol Sci 21(4):1208. https://doi.org/10.3390/ijms21041208
  • Sevilla F, Soler C, Araya-Zúñiga I, Barquero V, Roldan ERS, Valverde A (2023) Are there differences between methods used for the objective estimation of boar sperm concentration and motility? Animals 13(10):1622
  • Sikka SC (2001) Relative impact of oxidative stress on male reproductive function. Curr Med Chem 8(7):851–862. https://doi.org/10.2174/0929867013373039
  • Sironen A, Uimari P, Nagy S, Paku S, Andersson M, Vilkki J (2010) Knobbed acrosome defect is associated with a region containing the genes STK17b and HECW2 on porcine chromosome 15. BMC Genomics 11(1):699. https://doi.org/10.1186/1471-2164-11-699
  • Soler C, Garcia-Molina A, Contell J, Silvestre MA, Sancho M (2015) The Trumorph(R) system: The new universal technique for the observation and analysis of the morphology of living sperm [corrected]. Anim Reprod Sci 158:1–10. https://doi.org/10.1016/j.anireprosci.2015.04.001
  • Soler C, Valverde A, Bompart D, Fereidounfar S, Sancho M, Yániz JL, García-Molina A, Korneenko-Zhilyaev YA (2017) New methods of semen analysis by CASA. Sel’skokhozyaistvennaya Biologiya 52(2):232–241. https://doi.org/10.15389/agrobiology.2017.2.232eng
  • Soriano-Ubeda C, Romero-Aguirregomezcorta J, Matas C, Visconti PE, Garcia-Vazquez FA (2019) Manipulation of bicarbonate concentration in sperm capacitation media improves in vitro fertilisation output in porcine species. J Anim Sci Biotechnol 10(1):19. https://doi.org/10.1186/s40104-019-0324-y
  • Spano M, Evenson DP (1993) Flow cytometric analysis for reproductive biology. Biol Cell 78(1–2):53–62. https://doi.org/10.1016/0248-4900(93)90114-t
  • Suarez-Trujillo A, Kandula H, Kumar J, Devi A, Shirley L, Thirumalaraju P, Kanakasabapathy MK, Shafiee H, Hart L (2022) Validation of a smartphone-based device to measure concentration, motility, and morphology in swine ejaculates. Transl Anim Sci 6(4):txac119. https://doi.org/10.1093/tas/txac119
  • Sui H, Sheng M, Luo H, Liu G, Meng F, Cao Z, Zhang Y (2023) Characterization of freezability-associated metabolites in boar semen. Theriogenology 196:88–96. https://doi.org/10.1016/j.theriogenology.2022.11.013
  • Suo J, Wang J, Zheng Y, Xiao F, Li R, Huang F, Niu P, Zhu W, Du X, He J, Gao Q, Khan A (2024) Recent advances in cryotolerance biomarkers for semen preservation in frozen form-A systematic review. PLoS One 19(5):e0303567. https://doi.org/10.1371/journal.pone.0303567
  • Sutkeviciene N, Andersson MA, Zilinskas H, Andersson M (2005) Assessment of boar semen quality in relation to fertility with special reference to methanol stress. Theriogenology 63(3):739–747. https://doi.org/10.1016/j.theriogenology.2004.04.006
  • Szablicka D, Wysokińska A, Pawlak A, Roman K (2022) Morphometry of boar spermatozoa in semen stored at 17°C—the influence of the staining technique. Animals 12(15):1888
  • Tardif S, Dube C, Chevalier S, Bailey JL (2001) Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod 65(3):784–792. https://doi.org/10.1095/biolreprod65.3.784
  • Thurston LM, Watson PF, Holt WV (1999) Sources of variation in the morphological characteristics of sperm subpopulations assessed objectively by a novel automated sperm morphology analysis system. J Reprod Fertil 117(2):271–280. https://doi.org/10.1530/jrf.0.1170271
  • Thurston LM, Watson PF, Mileham AJ, Holt WV (2001) Morphologically distinct sperm subpopulations defined by Fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. J Androl 22(3):382–394
  • Torres MA, Diaz R, Boguen R, Martins SM, Ravagnani GM, Leal DF, Oliveira Mde L, Muro BB, Parra BM, Meirelles FV, Papa FO, Dell’Aqua JA Jr, Alvarenga MA, Moretti Ade S, Sepulveda N, de Andrade AF (2016) Novel flow cytometry analyses of boar sperm viability: can the addition of whole sperm-rich fraction seminal plasma to frozen-thawed boar sperm affect it? PLoS One 11(8):e0160988. https://doi.org/10.1371/journal.pone.0160988
  • Torres MA, Pedrosa AC, Novais FJ, Alkmin DV, Cooper BR, Yasui GS, Fukumasu H, Machaty Z, de Andrade AFC (2022) Metabolomic signature of spermatozoa established during holding time is responsible for differences in boar sperm freezability dagger. Biol Reprod 106(1):213–226. https://doi.org/10.1093/biolre/ioab200
  • Tsakmakidis IA, Lymberopoulos AG, Khalifa TA (2010) Relationship between sperm quality traits and field-fertility of porcine semen. J Vet Sci 11(2):151–154. https://doi.org/10.4142/jvs.2010.11.2.151
  • Valverde A, Madrigal-Valverde M (2019) Evaluación de cámaras de recuento sobre parámetros espermáticos de verracos analizados con un sistema CASA-Mot. Agronomía Mesoamericana 447–458
  • Valverde A, Madrigal-Valverde M, Lotz J, Bompart D, Soler C (2019a) Effect of video capture time on sperm kinematic parameters in breeding boars. Livest Sci 220:52–56. https://doi.org/10.1016/j.livsci.2018.12.008
  • Valverde A, Madrigal M, Caldeira C, Bompart D, de Murga JN, Arnau S, Soler C (2019b) Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system. Reprod Domest Anim 54(2):167–175. https://doi.org/10.1111/rda.13320
  • Valverde A, Barquero V, Soler C (2020) The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. J Anim Feed Sci 29(3):189–198. https://doi.org/10.22358/jafs/127691/2020
  • Valverde A, Calderón Calderón J, Víquez L, Barquero V (2021) Frecuencia de fotogramas óptima para evaluar la cinética espermática de verracos con un sistema CASA-Mot. Agronomía Mesoamericana 32(1):1–18. https://doi.org/10.15517/am.v32i1.41928
  • Valverde-Abarca A, Madrigal-Valverde M, Solís-Arias J, Paniagua-Madrigal W (2019) Variabilidad en los métodos de estimación de la concentración espermática en verracos. Agron Costarric 43:25–44
  • van der Horst G, Maree L (2009) SpermBlue: a new universal stain for human and animal sperm which is also amenable to automated sperm morphology analysis. Biotech Histochem 84(6):299–308. https://doi.org/10.3109/10520290902984274
  • Varea Sanchez M, Bastir M, Roldan ER (2013) Geometric morphometrics of rodent sperm head shape. PLoS One 8(11):e80607. https://doi.org/10.1371/journal.pone.0080607
  • Verstegen J, Iguer-Ouada M, Onclin K (2002) Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57(1):149–179. https://doi.org/10.1016/s0093-691x(01)00664-1
  • Vertika S, Singh KK, Rajender S (2020) Mitochondria, spermatogenesis, and male infertility—an update. Mitochondrion 54:26–40. https://doi.org/10.1016/j.mito.2020.06.003
  • Vianna WL, Bruno DG, Namindome A, Rosseto AC, Rodrigues PHM, Pinese ME, Moretti ASA (2004) Estudo comparativo da eficiência de diferentes técnicas de mensuração da concentração espermática em suínos. Rev Bras Zootec 33:2054–2059
  • Vicente-Carrillo A, Alvarez-Rodriguez M, Rodriguez-Martinez H (2017) The CatSper channel modulates boar sperm motility during capacitation. Reprod Biol 17(1):69–78. https://doi.org/10.1016/j.repbio.2017.01.001
  • Vicente-Fiel S, Palacin I, Santolaria P, Hidalgo CO, Silvestre MA, Arrebola F, Yaniz JL (2013) A comparative study of the sperm nuclear morphometry in cattle, goat, sheep, and pigs using a new computer-assisted method (CASMA-F). Theriogenology 79(3):436–442. https://doi.org/10.1016/j.theriogenology.2012.10.015
  • Visconti PE (2009) Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci USA 106(3):667–668. https://doi.org/10.1073/pnas.0811895106
  • Visconti PE, Krapf D, de la Vega-Beltran JL, Acevedo JJ, Darszon A (2011) Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl 13(3):395–405. https://doi.org/10.1038/aja.2010.69
  • Vyt P, Maes D, Dejonckheere E, Castryck F, Van Soom A (2004a) Comparative study on five different commercial extenders for boar semen. Reprod Domest Anim 39(1):8–12. https://doi.org/10.1046/j.1439-0531.2003.00468.x
  • Vyt P, Maes D, Rijsselaere T, Dejonckheere E, Castryck F, Van Soom A (2004b) Motility assessment of porcine spermatozoa: a comparison of methods. Reprod Domest Anim 39(6):447–453. https://doi.org/10.1111/j.1439-0531.2004.00538.x
  • Waberski D, Meding S, Dirksen G, Weitze K, Leiding C, Hahn R (1994) Fertility of long-term-stored boar semen: Influence of extender (Androhep and Kiev), storage time and plasma droplets in the semen. Anim Reprod Sci 36(1–2):145–151
  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484
  • Wang C, Guo LL, Wei HK, Zhou YF, Tan JJ, Sun HQ, Jiang SW, Peng J (2019) Logistic regression analysis of the related factors in discarded semen of boars in Southern China. Theriogenology 131:47–51. https://doi.org/10.1016/j.theriogenology.2019.03.012
  • Xu Z, Xie Y, Zhou C, Hu Q, Gu T, Yang J, Zheng E, Huang S, Xu Z, Cai G, Liu D, Wu Z, Hong L (2020) Expression pattern of seminal plasma extracellular vesicle small RNAs in boar semen. Front Vet Sci 7(929):585276. https://doi.org/10.3389/fvets.2020.585276
  • Yaniz JL, Soler C, Santolaria P (2015) Computer assisted sperm morphometry in mammals: a review. Anim Reprod Sci 156:1–12. https://doi.org/10.1016/j.anireprosci.2015.03.002
  • Yaniz JL, Capistros S, Vicente-Fiel S, Hidalgo CO, Santolaria P (2016) A comparative study of the morphometry of sperm head components in cattle, sheep, and pigs with a computer-assisted fluorescence method. Asian J Androl 18(6):840–843. https://doi.org/10.4103/1008-682X.186877
  • Yeste M, Briz M, Pinart E, Sancho S, Bussalleu E, Bonet S (2010) The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter. Anim Reprod Sci 119(3–4):265–274. https://doi.org/10.1016/j.anireprosci.2010.02.011
  • Yeste M, Fernandez-Novell JM, Ramio-Lluch L, Estrada E, Rocha LG, Cebrian-Perez JA, Muino-Blanco T, Concha II, Ramirez A, Rodriguez-Gil JE (2015) Intracellular calcium movements of boar spermatozoa during ‘in vitro’ capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model. Andrology 3(4):729–747
  • Yeste M, Bonet S, Rodriguez-Gil JE, Rivera Del Alamo MM (2018) Evaluation of sperm motility with CASA-Mot: which factors may influence our measurements? Reprod Fertil Dev 30(6):789–798. https://doi.org/10.1071/RD17475
  • Zhang YT, Liu Y, Liang HL, Xu QQ, Liu ZH, Weng XG (2021) Metabolomic differences of seminal plasma between boars with high and low average conception rates after artificial insemination. Reprod Domest Anim 56(1):161–171. https://doi.org/10.1111/rda.13861
  • Zhao Y, Gao N, Li X, El-Ashram S, Wang Z, Zhu L, Jiang W, Peng X, Zhang C, Chen Y, Li Z (2020) Identifying candidate genes associated with sperm morphology abnormalities using weighted single-step GWAS in a Duroc boar population. Theriogenology 141:9–15. https://doi.org/10.1016/j.theriogenology.2019.08.031
  • Zhao G, Zhao X, Bai J, Dilixiati A, Song Y, Haire A, Zhao S, Aihemaiti A, Fu X, Wusiman A (2023) Metabolomic and transcriptomic changes underlying the effects of L-citrulline supplementation on ram semen quality. Animals (Basel) 13(2):217. https://doi.org/10.3390/ani13020217
  • Zhao Y, Qin J, Sun J, He J, Sun Y, Yuan R, Li Z (2024) Motility-related microRNAs identified in pig seminal plasma exosomes by high-throughput small RNA sequencing. Theriogenology 215:351–360. https://doi.org/10.1016/j.theriogenology.2023.11.028
  • Zigo M, Kerns K, Sutovsky P (2023) The ubiquitin-proteasome system participates in sperm surface subproteome remodeling during boar sperm capacitation. Biomolecules 13(6):996. https://doi.org/10.3390/biom13060996