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RESIDUAL LIFE AND CONDITIONAL SPACINGS*
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SUMMARY. In this work, we give a general method to obtain a distribution function
F(z) through the moment of the residual life defined by hp(z) = E((X — #* | X 2 ),
for k = 1,2,3, ..., both in continuous and discrete cases. We also characterize F(z) through
moments of conditional spacings of order statistics, which have applications in the context
of the k-out-ofin systems. Moreover, we study characterizations based on relations between
failure ate function and left censured moment functions, my(z) = B(X® { X > ).

1. TIntreduction

Let X be a random variable (r.v.}, usually representing the life length for
a certain unit (where this unit can have multiple interpretations), then r.v.
(X —z | X > ), represents the residual life of a unit with age .
Several functions are defined related to the residual life. The failure rate
function, defined by: f@)
z
r{z) = 1= Flor) (L)
represents the failure rate of X (or F) at agez, forz € D={t € R : F(U-) < oo},
where F(z) = P(X < z), F(2—) = lim,_,,- F(2) and f(z) is the density func-
tion when X is absolutely continuous, or f(z) = P(X =z) when X is discrete.
Ancther interesting function is the mesn residual life function, defined by
hi(z) = F(X —z | X > x), for 2 € D, and it represents the expected additional
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life length for a unit which is alive at age z. This function is equivalent to the left
censured mean function, also called vitality function (see Gupta (1975)), defined
by mi(z) = E(X | X > z).

It is well known that these three functions uniquely determine F(z) (see
Gupta (1975), Kotz and Shanbhag (1980) and Zoroa et al. (1990)). In particular,
the explicit expression of F(z) from A1(z) (inversion formula), is given by

T

_ Ri{t) +1 _
F(g) =1 exp { i et (L2)
for € D and absolutely continuous F'
: - Other important functions which also uniquely determine F(z) are the right
censured mean function,m}(z) = E(X | X < z), the doubly censored mesn
function,m}*(z,y) = E(X | z < X < y), and the order mean function, £(z) =
E(Xiy1n | Xijn = ), where X; ,, denotes the ith order statistics of a random
sample of size n from F (see Ruiz and Naverro (1995, 1996) and Franco and
Ruiz (1995)).

Naturally, some authors have recently studied characterization problems
through left censured moments mz{z) = E(X* | X > ) (see Gupta and Gupta
(1983), Adatia et al {1991) and Ghitany et al. (1995)) and moments of the

I - zesidual life, hy(z) = E((X —)* | X > ) (see Nagaraja (1975), Dallas (1979),
- ‘Gupta and Gupta (1983) and Galambos and Hagwood (1992)), which generalize

left censured mean function and mean residual life, respectively.
For my(z), it is easy to obtain the equality

()
| () — < {1.2)
for k= 1,2,..., which proves that m(z) uniquely determines Fi(z).

Nagaraja (1975) shows that, under some conditions, A%(z), uniquely deter-
mines F(z) in the absolutely continuous case. Dallas (1979) characterizes the
exponential distribution when %% (z) is constant. Later, Gupta and Gupta (1983)
prove that he(z) does not uniquely determine F(z). Recently, Galambos and
Hagwood (1992) have shown for positive and continnous random variables that
ha(x) uniquely determines F(x), and hence, that the result of Gupta and Gupta
has an error. Nevertheless, neither Nagaraja (1975) nor Galambos and Hagwood
(1992) give an explicit expression to obtain F(z) from ho(x).

In Section 2, we give a general method to obtain F(z) from hg(z) for k£ =
1,2,3,..., both in continuous and diserete cases. In particular, when & = 1, we
obtain the results of Laurent (1974), Gupta (1975) and Zoroa et al. (1990) for
the mean residual life.

In Section 3, we study characterization problems through moments of con-
ditional spacings

r(z) =

En(8) = B((Kirp — Xon)* | Ko =12) (LY
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which represents the kth moment of the residual life of a (n —i)-out-of-n system,
knowing that only (n — i) components are alive at age z, from this one deduces
its importance on system reliability. So, we prove that & » uniquely determines
F. In particular, when k¥ = 1, we obtain the results given by Ferguson (1967),
Kirmant and Alem (1980), Nagaraja (1988a, 1988b) and Franco and Ruiz (1995).

Another important problem jis to characterize distribution functions from
relations between reliability functions. For example, Ruiz and Navarro (1994)
give a general way to characterize a distribution function through relation of the
type '

my(z) = ¢+ d(z)r{x) .+ (1.5)
where ¢ is & constant, and d(z) is 2 real function satisfying some conditions, In
particular, taking ¢ = 0, it is shown that m;(z)/r(z) uniquely determines F(x).
The work of Ruiz and Navarro (1994), extends previous results given by different
authors (see Osaki and Li (1988), Ahmed (1991) and Nair and Sankaran (1991)}.

Recently, particular characterizations have been given through relations of
type ' '

mg(z) = ¢+ d(z)r(z) ...(L.6)
where k = 2,3... (see Adatia et al. (1991), Koicheva (1993) and Ghitany et al.
(1995)). :

In Section 4, we give a general method to obtain F(x} from a relation of type
(1.6), both in continuous and discrete cases, extending results given in Adatia
et al. {1991), Koicheva (1993) and Ghitany ef al. (1995).

It is easy to translate our results to the corresponding concepts for the right
or doubly ceusored random variable.

. 2. Characterization Through Moments of the Residual Life.

In this section we study determination of F(z), from the moments of the
residual life Az (), defined by

() = I?Irl‘(z__) [w ” = 2)*dF () (21)

fork=1,2,..and x € D = {x € R: F(§—) < oo}. From now on we assume
that '

/ ” t*dF(t) ... (2.2)

0
is finite, which implies the existence of k(). Let us see some previous results.

LEMMA 2.1, If X is an absolutely continuous r.v., then

r(z) = hi(x) + khp—1(x)

.. (2.3)




4 J. NAVARRO, M. FRANCO AND J.M. RUIZ

holds, for allz € D and for allk =1,2,3,...

REMARK 2.1. The equality (2.3) proves that two consecutive moments of
the residual life determine F'(z). '

REMARK 2.2, Using (2.3) for k and & + 1, and taking Ay = Agy1/hg, we
have

k)\k(:l.')
MNfzy+k+1
which proves that the ratio of two consecutive moments of the residual life,
uniguely determines F(z).

No1(@) = e (2.4)

Another imteresting concepts given by Gupta and Gupta (1983), are the -

partial moments, defined by

gn{z) = f "t — 2)hdF () .. (25)

for £ = 1,2, ... Some applications of partial moments in Bayesian point estima-
tion and in management science problems have been mentioned by Winkler ef
al. (1972). Gupta and Gupta (1983) show that g(z) uniquely determines #(x).
However, they do not give the explicit expression of F'(z) from gi(z), which we
obtain in the following proposition.

ProposiTION 2.2, If F' is an absolutely continuous (life) d.f,, then
—1¥*
Pla)=1- L_k..!)_g,g () ... (2.6)

holds fer all £ = 1,2, ...
In the following theorem we obtain F'(z} from hg(x).

THREOREM 2.3. Let F(z) be a distribution function with support (o, 8), o €
R, 3 findte or infinite, and analytic in (o, B) with

SN T .
= bi{r — o)’ e (27
o) X .
then hy(x) uniquely determines gr(z) = 3 ai(z—a)*, and hence, F(z), through
$==0
1rP(a—) §=0,1,..,k—1
a; = PN (2.8)
i sl AL N R A

ProoF. Since F(e—) =0, from (2.1) and {2.5), we have

hir(@) = gu() - (29)
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for all z < @, and since gz has continuous differential of order & — 1, if we know
hi(@), then we know g () for j = 0,1, ...k — 1.
Using that F(z) is analytic in [o, §) and

0¥ (@) = (—1)*!(L - F(2)) ... (2.10)
we obtain that gz(z) is also analytic, and we can write

grlz) = Zam(m—a) ... {211)

i=0
for z € [, 8), where
= —h(”(a ) ..(212)

and hence, hk(w) uniquely determines a; for § =0,1,...,k—1. ;From definition
of hx () and equality (2.10) it is easy to obtain the following differential equation

g (@) = (~1)* 5 (g:)gk( z) I PAL)

Moreover, hx(z) is positive and analytic in [, (), 80 (2.7) and (2.13) lead to

Z(Hﬂk Qi (z — @) = (Zb z— o:)) (Za.i(w——a)") ...(2.14)

i=0 f=0 =0

and we have
bot; + ... + biap

for 1 =0, 1, ..., that is to say, that from d;, we obtain q; for i =k, k41, ... From

(2.12) and (2 15) we have that fz(z) determines g(x) and, hence, F(:c), which
finishes the proof, ]

.. (2.15)

REMARK 2.3. If we know Ax(z) solving the standard differential equation
(2.13'), we obtain gi(z) and, hence F(z). In particular, when k = 1, solving (.
'2.18), we have the inversion formula (1.2). '

REMARK 2.4, Taking hz(z) = k!/a* we obtain the characterization given in
Dallas {1979) for the exponential distribution.

REMARK 2.5. Taking fi(z) = (b — 2)%/(°*) or hu(z) = (a+2)*/(°;") we
characterize the power and Pareto distributions, respectively.

We have not found any previous results for discrete distributions, In this
case, we can obtain F(z) from A (z), as follows:

TuEOREM 2.4. Let F(x) be the distribution function of a discrete o, X
with mass in {z; : i = a,a + 1,..,b}, where ; < Ti11, a can be —o0 and b can
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be oo, and let hxp(z) = E((X — z)* | X > ). Then, hy(x) uniquely defermines
F(z) through the following inversion formule

H hf:sz*) ...(2.16)

valid for all T < Ty, where hx(z+) = lime, o+ Ax(t).
Proor. p; = P(X = z;) and = € (z;, zj4:1], then-

1
i) = —=— > (@ —zi)"p; s (2.17)
(ARH ;ng J
hg(r) = = .’.E,,— ) 5 ...(2.18)

and hence

hk(ﬂ’:_;, = -—-— Z(:E., .’.BJ, Pi e (219)
3:",1 Pi >

(From (2.17) end (2.19),

hi(z+)  1— Fz;—) .- (2.20)

holds, and it is easy to obtain (2.16). O

REMARK 2.6. In particular, when & = 1, we have the inversion formula for
the residual life in the discrete case given by Laurent (1974),

REMARK 2.7. Taking hy(2) = ox, where ay = E(X”), we characterize the
geometric distribution.

REMARK 2.8. Using Helly’s second theorem it is easy to show that if F, — F
weakly, then Ay n — hi weakly, for all k and hence, if (X, ..., X;,) is a sample
of size n, then the empirical estimator

. E(Xi_ﬂ?)kl(xfzx) _ .
ha(z) = Z]-(Xizx) , ... (2.21)

converges weakly to hy(x), where 1(r) = - 1 if T'is true and 1) = 0 otherwise.
This estimator jointly with Theorem 2.3 can be used to make tests for exponen-
tiality in the same way that Hollander and Proschan (1975) and Lai (1994).

3. Characterization Through Moments of Conditicnal Spacings.
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In a similar way as in Section 2, it can be seen that if F' is an absolutely
continuous distribution then

z, ( )+k£2k— ( )
U

holds, for all 4, 1 <4 < n, z € D and for all k= 1,2,3,..., where §; 3(x) is given
by (1.4). We also suppose that (2.2 ) is finite, which implies that & 5(z) exists.
So, remarks similer to 2.1 and 2.2 hold in this case.

Using an analogous development to Proposition 2.2 and Theorem 2.2 , we
get the following result:

PROPOSITION 3.1. Let i be fixed with L <i<n. If D =(a,8) witha e R
and F is analytic in [0, f), then & & uniquely determines F.

. (31)

REMARK 3.1. If & = 1 it is easy to obtain the inversion formula for & ;.
In particular, when §; ; is linear, it obtain the results of Ferguson (1967) and
Nagaraja (1988a) for the exponential and beta distributions.

REMARK 3.2. Taking & x(x) = ax/(n— i) or & p(z) = (b —xz)k/ (c(”_,:)+k),
we characterize the exponential and power distributions, respectively.
On the other hand, for discrete distributions, we consider two cases for (1.4):

i r(®) = B(Xit1n ~ Xin)® | Xin =2, Xit1n — Xin = 0) ...(3.2)
(7)) = B((Xitrn — Xin)* | Kin =2, Xiv1n — Xin > 0) ...(3.3)

since when X 1,n — Xi» = 0, and only in this case, ties in the sample values are

permitted. So, we observe that there are very few works based on conditional

expectations of order statistics in the discrete case, and these frequently use a

sample size n = 2, probably due to the possibility of ties, since in this situation

the order statistics, X; , fail to form a Markov chain (see Nagaraja (1982)).
For X110 — Xin > 0, (3.3) can be written as

fate) = 2 oy - o L TERE R LTI o

Ti>@
and using a similar development to Theorem 2.4, we obtain the following result.

ProrosiTION 3.2, Let ¢ be fixed with 1 < i < n. If F is a discrete distribu-
tion with mass in {z; : 1 = a,a + 1, ..., b}, where z; < %;41, ¢ can be —co and b
can be oo, then &; 5 given in (3.3 ) uniquely determines F by

1/(n=i) |
F)=1-{ [ fipl@y—) ... (3.5)

Ti%T g”" J:J)

valid for all = < x3.

T
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REMARK 3.3. If £ 1(z) is constant for & = 0, 1,... we characterize the geo-
metric distribution. In particular, taking n = 2 in (3.5), the linearity of &
on the support allow us to obtain the results of Kirmani and Alem (1980) and
Nagaraja (1988b) for the geometric, hypergeometric and Waring distributions.
In general, for n > 2, taking £; 4(2) = @u_ie/q" * We characterize the geometric
distribution, where o, is the kth moments of the geometric distributions of
parameter 1 — g™~ %,

For Xip1n — Xin =0, (3.2) can be written as

Epl@) = Y (25 —2)* (1= Flag=))" " = (L = Flz; )" ) Alw)  ...(3.6)

where

F(z)) - (F(z-))}
Ay = L@ = FE)) . (3T)
i fpey B HL—t) " di
As we have seen, the positive chance of ties between X, and X1, has
limited the work in this way, so we show in the following proposition that if
i = 1 then & r uniquely determines F', which generalizes to n > 2 the results of

Kirmani and Alam (1980) and Nagaraja (1988b} for n = 2. For that, let us see
now a previous lemma.

LeMMa 3.3. For alln > 2 and @ such that 1 < & < n, the polynomial
glz) =2" L+ L+ 2P+ (1 - 0)
has o unique pointy € (0,1) such that g(y) = 0.

ProposiTioN 3.4. If F is a discrete distribution with mass in {z; : { =
a,a+1,..,b}, where x; < r;yy, & can be —co and b can be oo, then & i given
in (3.2) uniquely determines F.

ProoF. From (3.6}, we obtain for z = x; that

bup(23) (1 — Bz (1 F(z;))* =
=0 . .(38)

=n Y (Tm— )" (1 — Plam—))"" = (1 - Flzm))"?)

zm>mj

and for = € (z;_y1,%;) that

Ep(@) (L= Fz;=)"" = 3 @m—2)* (L= Flan—))"" = (1 - Flza))"")

©y
' v o (3.9)
so, from (3.8) and (3.9), we have

n—1

né1o(@;—)(1 = Fla;=)""" = &up(;) D (L - Fla;=))""*(1 = F(zy))’
s=0

T
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which is equivalent to

=) =§ (i:M)g | ...(3.10)

Ve | S \I- Fla-)

taking into account Lemma 3.3 with 6 = 8; = n M € (1,7n), we have that

§1,6{7;)
there exists a unique y; such that ¢{y;) = 0, and using (3.10) we obtain that
N ek 7))
I 1-F (:L'j —) !

and hence it is easy to get that

Fe)=1- [] vm
&1 5(Tm )
E1,%(Tm)

REMARK 3.4. From Lemma 3.3 for n = {2, 3,4, 5}, the inversion formula for
any F' can be obtained. For example,

where %, is uniquely determined by Lemma 3.3 for each 8, = n- it

o in=2then Flz;)=1- [] (ﬁi’f@i’*——lﬂ).

Ban S T4 & k(l'm')
o Ifn=23then F(z;)=1— ][] (( ggk(?m—;)) %)
<mj L\ Tm

However, the general inversion formula cannot be found for n > 5. It is still
unknown if discrete distributions will be uniguely determined by moments of
conditional spacings, &; z, when we impose the condition ¢ > 1 in (3.2).

RemaRk 3.5, If & ; is constant then the geometric distribution is char-
acterized, In particular, when n = 2, we obtain the results of Kirmani and
Alam (1980) and Nagaraja (1988b). In genersl, when n = 2, taking & x(z) =
{1 — ¢)@n—1,%/(1 — ¢") we characterize the geometric distribution.

4, Characterization Through Relations.

In this section we characterize a distribution function from a relation between
the fatlure rate r(z) and left censured moments my{x), both in continuous and
discrete cese. As in the above sections, we assume that (2.2 ) is finite, so mg{x)
exists,

THEOREM 4.1. Let X be a r.v. with differentioble density in ity support
(o, B). Then, the following condiiions are equivalent:
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1, ma(z) = ¢+ d{z)r(z)
2. f{z)/f(z) = (c~ d'(z) - =*)/d(z)
where, ¢ is a constant and d(x) is a real function satisfying

mh_% f(z)d(z) =0 {4l

Proor. Let us go on to prove (i) = (it). From (),
o0
/ (¢ — ) f (Dt = d() () . (42)
&
holds, and, we obtain

—(2* — o) fz) = d'{z) f(z) + d{z) () . (4.3)

which implies ().
Reciprocally, rewriting (7), we have

(¢ — z%) f(x) = (d(z) f(z))’ .. {4.4)

and using (4.1), it is easy to obtain (7).

REMARK 4.1. If in the above theorem, lim f(z)d(z) = 0 holds, then ¢ = o,
where oy = E{X%). If we take ¢ = 0, the ::a,ggve theorem proves that the ratio
mg{z)/r(z), uniquely determines F(z).

REMARK 4.2. ;From the above theorem, taking

1. ¢ = kla™* and d{z) = f Bqi~*-izi we obtain the characterizations

i=1
given in Adatia et al. (1991) and Koicheva (1993) for the exponential distribu-
tion. .

2. ¢ =T(p+k)a*/T(p) and d(z) = 12 %((;Lfgai“’““lmé, we obtain the
characterizations given in Adatia et al. (1991) and Koicheva (1993) for the
Gamma distribution,

3. ¢ =1/ and d(z) = z/4k, we obtain the characterization given in Ghitany
et al. (1995) for the Weibull distribution.

4. ¢=1/%, d(z) = z/2y and k = 2, we obtain the characterization given in
Ghitany et al. {1995) for the Rayleigh distribution.

5. k& = 1, we obtain Theorem 3 given in Ruiz and Navarro (1994) for relations
of type (1.5), as well as particular characterizations given in Kotz and Shanbhag
(1980}, Osaki and Li (1988), Ahmed (1991) and Nair and Sankaran (1991) for
some usual distributions.
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6. d(z) = d # 0, that is mz(2) = c+dr(z), where c and d are constant, then

f{z) = cexp {gm— d(lcl-l—l)xk-l—l} ...{4.5)

where « is a constant. In particular, when k = 1, it characterizes the Normal dis-
tribution from relation my(z) = p+o2r(z), results given in Kotz and Shanbhag
(1980) Nair and Sankaran (1991)

R+l

7. d(z) = 3 a;z’,we characterize the distributions belong to the Pearson

g=
family. Moreover, if k£ = 1, we obtain the characterization of Pearson family of
distributions given in Nair and Sankaran (1991).
8. k=2, c= a3 and d(z) = 222 +2(2+n)z or d(z) = (a® +na)/(n—2), we
characterize the Chi-Square and ¢-Student distributions, respectively,
For discrete distributions, we have the following theorem which has proof
similar to that of Theorem 2.3. '

THEOREM4.2. Let X be a discrete r.v. with mass in {z; ' i = a,a+1,...,b},
where T; < Tiwi, @ can be —oo0 and b can be co. Then, the following condilions
are equivalent:

1. mg(z;) = ¢+ d(zi)r(z:)

2. Af(@)/f(w:) = (e~ Ad(zs) — o) /d(zss)

where, f(z) = P(X = z), Ah{z;} = h{@is1) — h{x:), ¢ i8 a constant, and
d(z) is a regl function verifying

lim f(z:)d(z:) = 0 ...(4.6)

when b= oo, or d(zp) = zF — ¢, when b < oo.
REMARK 4.3. If in the above theorem, lim f(z;)d(z;) = 0 holds, then ¢ = az,
: T+

where o = E(X %), If we make ¢ = 0, the above theorem proves that the ratio
my(x)/r(z), uniquely determines F(z), in the discrete case.

REMARK 4.4, ;From the above theorem, taking

1. k= 1, we obtain Theorem 4 given in Ruiz and Navarro (1994) for relations
of type (1.5) as well as the characterizations given in Osaki and Li (1988) and
Nair and Sankaran (1991).

2. k=2 If ¢c= oy and d{z) = gz(z + (n — 1)(1 ~ g)) or d(z) = z* + Az,
we characterize the binomial and Poisson distributions, respectively. If ¢ = 0
and d(z) = ((1 - a)z® + az)/(1l ~ a)? we characterize the logarithmic series
distribution.

3. d{z;) =d #0, that is mg(z;) = e+ dr{z;), then

flEi)  c+d—af
flz) d

o (4T)
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for all i, Hence, the discrete 0-1 Normal distribution must verify
Ul 2.2 VA R ... {4.8)

Note that z; < 1. However, it can be verified that a symmetric discrete
distribution {f(z) = f(—x), for all z) verifying (4.8) does not exist. In spite of
this, there exist discrete distributions, such as that defined by

1 (2
Y = =404
f(mz) Sq

2 =1 — g+t

x "
where ¢ is an integer, ¢ € (0,1) and s = ) ¢, verifying (4.8). Moreover, it

=—cQ
can be verified that x = 0, and, if g=2"2, then 6* = 1.
REMARK 4.5. Using the relation between my{z) and h(x), we can write the
relations (1.6) using Az{z) and r(z), both in continuous and discrete cases.
Acknowledgments. The authors would like to thank the referee for the valu-
able comments and careful reading of the manuscript, which essentially improved
the exposition of this paper.
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